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Background
Single-cell technologies have been widely used to characterize complex cellular pro-
cesses, measuring diverse modalities such as gene expression, chromatin accessibility, 
DNA methylation, genome organization, and protein abundance [1]. The emergence of 
single-cell multiomics methods enables the simultaneous profiling of multiple modali-
ties within the same cell. For instance, SNARE-seq [2] and SHARE-seq [3] measure 
gene expression and chromatin accessibility, CITE-seq [4] and REAP-seq [5] quantify 
transcriptome and protein markers jointly, and HiRES [6] and GAGE-seq [7] combine 
higher-order chromatin organization with RNA abundance. These paired single-cell 
methods provide valuable insights into the regulatory mechanisms across different lay-
ers within a cell. However, single-cell multiomics methods face several limitations. 
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tion. Systematic benchmarking demonstrates the superior accuracy and generalization 
of Cisformer against existing methods. Cisformer leverages its inherent interpretability 
to precisely link cis-regulatory elements to target genes, facilitating the identification 
of functional transcription factors associated with tumorigenesis and aging. Overall, 
Cisformer is a powerful tool for single-cell multiomic data analysis.
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Careful specimen preparation and preservation are required to effectively capture tar-
get molecules, which increases experimental complexity. Furthermore, the high costs 
of multiomics profiling protocols limit their scalability. Lastly, multiomic profiling data 
tend to be more prone to noise and sparsity compared to standard single-cell data. Con-
sequently, it can be time-consuming and often impractical to jointly profile single cells in 
many instances, prompting the need to explore information generation for one modality 
when another is available.

Several computational approaches have been developed to enable cross-modality gen-
eration at the single-cell level. For example, BABEL achieves cross-omics generation 
using two autoencoders (AE) [8]. Polarbear predicts missing modalities through a semi-
supervised variational autoencoder (VAE) framework trained on both single-assay and 
co-assay data [9]. More recently, scButterfly employs a dual-aligned variational autoen-
coder for single-cell cross-modality prediction [10]. Despite these advances, existing 
methods still face several limitations. First, generation accuracy remains suboptimal, 
primarily due to constraints imposed by both model architecture and the inherent spar-
sity of single-cell data. Second, model generalizability requires further improvement, 
particularly for challenging cross-tissue-type prediction tasks that are crucial for prac-
tical applications. Most importantly, model interpretability in uncovering the interplay 
between modalities is often overlooked. Most existing single-cell cross-modality gen-
eration models rely on AE or VAE frameworks, making it difficult to extract meaningful 
biological insights from the models.

Understanding the transcriptional regulation of genes by cis-regulatory elements 
(CREs), such as promoters and enhancers, is fundamental to deciphering gene regula-
tory programs underlying cellular functions [11]. Single-cell multiome technologies that 
simultaneously profile gene expression and chromatin accessibility within individual 
cells offer an unprecedented opportunity to study these dynamics at cellular resolution. 
Current computational approaches for linking CREs to genes using single-cell multiome 
data are primarily correlation-based or linear models. For instance, ArchR leverages cor-
relations between chromatin accessibility at CREs and gene expression levels to identify 
gene-associated CREs [12]. While this method offers a straightforward implementation, 
it is highly susceptible to confounding factors. In contrast, SCARlink employs regu-
larized Poisson regression to model gene-level regulatory effects [13]. This approach 
provides good interpretability but struggles to capture the complex and non-linear rela-
tionships between CREs and their target genes. These limitations highlight the need for 
more robust and interpretable methods that can effectively integrate molecular informa-
tion from both the transcriptome and epigenome.

In this study, we present Cisformer, a cross-attention-based generative model for sin-
gle-cell cross-modality generation. We focus on modality translation between gene-wide 
single-cell RNA sequencing (scRNA-seq) data and genome-wide single-cell assay for 
transposase-accessible chromatin using sequencing (scATAC-seq) data, as existing data-
sets are more comprehensive and abundant. More importantly, our primary interest lies 
in understanding the interaction of transcriptional programs with epigenomic accessi-
bility. Cisformer employs a decoder-only architecture with a cross-attention mechanism, 
striking a balance between model complexity and biological interpretability. A key inno-
vation of Cisformer is its feature duplication and index encoding strategy, specifically 
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designed to address the challenge of processing ultra-long sequences from chromatin 
accessibility data. Through comprehensive benchmarking, we demonstrate the superior 
performance of Cisformer in the single-cell RNA-ATAC translation task across various 
biological systems and species. By leveraging the cross-attention mechanism, Cisformer 
effectively captures the intricate interactions between gene expression and chroma-
tin accessibility. We further apply Cisformer in cancer and aging-related scenarios to 
identify potential functional CREs and transcription factors (TFs), thereby advancing 
our understanding of the molecular mechanisms underlying these critical biological 
processes.

Results
Overview of the Cisformer framework

Cisformer utilizes a Transformer-based architecture to facilitate cross-modality genera-
tion at single-cell resolution. To achieve a balance between model complexity and biolog-
ical interpretability, we implemented a decoder-only structure featuring cross-attention 
mechanisms (Fig.  1a, Additional file  1: Fig. S1). Unlike AE or VAE-based approaches, 
our model does not apply dimensionality reduction to input genes or chromatin peaks. 

Fig. 1  Overview of the Cisformer model. a The model architecture of Cisformer for single-cell RNA-to-ATAC 
(left) and ATAC-to-RNA (right) generation. Gene and peak features are encoded respectively, integrated 
through Transformer blocks with cross-attention mechanisms, and subsequently transformed into final 
outputs by an MLP. b The genes and chromatin peaks are selected or duplicated to generate gene-peak 
pairs as model input (top). Chromatin peak indices are encoded through a digit decomposition strategy, 
with 1,013,459 and 32,488 as representative examples (bottom). c The downstream applications of Cisformer, 
including validating biological interpretability (left), identifying cell-type-specific TFs in pan-cancer datasets 
(middle), and predicting aging-related CREs (right)
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Recognizing the challenges that attention-based models encounter when process-
ing long sequences, particularly for chromatin peaks, we propose an innovative fea-
ture duplication and selection strategy. In the RNA-to-ATAC generation, we focus on 
expressed genes (non-zero expression), as this subset is more biologically significant. 
For chromatin peaks, we first select the active CREs after binarization (value of 1) and 
then balance the sequences by incorporating an equal number of inactive CREs (value 
of 0) (Fig. 1b, top left). This process generates multiple pseudo-cells from a single origi-
nal cell, serving as a form of data augmentation. These gene-peak pairs are then used as 
input for model training. In the inference stage, Cisformer takes expressed genes from 
scRNA-seq data as input and predicts chromatin accessibility profiles covering all CREs. 
In the ATAC-to-RNA direction, we construct gene-peak pairs after filtering out inactive 
genes or peaks, adhering to biological principles (active CREs drive target gene expres-
sion) and enhancing computational efficiency (Fig. 1b, top right). Consequently, during 
the inference stage, Cisformer relies on prior knowledge of expressed genes (e.g., derived 
from single-cell multiome data) to generate a full transcriptome from chromatin accessi-
bility profiles. This improves the accuracy of linking CREs to their target genes, albeit at 
the cost of reduced generative capacity for unexpressed genes. Another key innovation is 
the development of a novel indexing method for processing millions of chromatin peaks. 
As illustrated in the examples, each digit of the peak index is individually extracted and 
embedded, with the resulting representations subsequently combined (Fig. 1b, bottom). 
This peak index encoding strategy is more effective than directly embedding the index as 
a whole. Model training is guided by a categorical cross-entropy (CCE) loss to quantify 
the discrepancy between generated and measured RNA profiles, whereas a binary cross-
entropy (BCE) loss assesses the accuracy of inferred ATAC values. Upon achieving high 
generation accuracy, Cisformer’s generative capacity and intrinsic interpretability via 
attention mechanism enable the identification of cell type-specific TFs and functional 
CREs within the context of the intricate biological processes, including cancer develop-
ment and aging (Fig. 1c).

Cisformer performs cross‑omics generation with high accuracy and robust generalization

To evaluate Cisformer’s performance in single-cell multi-omics generation, we system-
atically benchmarked our model against published state-of-the-art methods. For RNA-
to-ATAC generation, we designed four evaluation scenarios: cell-level train-test splitting 
within a dataset (intra-dataset 1), cell-type-level train-test splitting within a dataset 
(intra-dataset 2), training on one tissue and testing on a similar tissue (inter-dataset 1), 
and training on one tissue and testing on a distinct tissue (inter-dataset 2) (Additional 
file 1: Fig. S2a). Inferred chromatin accessibility was assessed using cell clustering met-
rics, including adjusted mutual information (AMI), normalized mutual information 
(NMI), adjusted Rand index (ARI), and homogeneity score (HOM). In the “intra-dataset 
1” scenario, we randomly split the peripheral blood mononuclear cell (PBMC) multiome 
dataset from 10X Genomics (9964 cells) into 80% for training and 20% for testing. In the 
“intra-dataset 2” scenario, we designated naïve CD4+ T cells (CD4 naïve), natural killer 
cells (NK), regulatory T cells (Treg), type-2 conventional dendritic cells (cDC2), and 
plasmacytoid dendritic cells (pDC) as the testing set (1816 cells), and used the remaining 
cells for training. This cell-type-level splitting strategy ensures the testing set comprises 
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cell types as distinct as possible from those in the training set while retaining sufficient 
cells in the training set for effective model training. Cisformer demonstrated marginally 
superior performance compared to two existing methods, BABEL [8] and scButterfly 
[10], in both intra-dataset scenarios (Fig.  2a, left). From a practical perspective, inter-
dataset prediction is more valuable than intra-dataset generation. In the inter-dataset 
scenarios, we trained Cisformer using PBMC multiome data again and then tested it on 
datasets from bone marrow mononuclear cells (BMMC; inter-dataset 1) and brain tissue 
(inter-dataset 2). Cisformer substantially outperformed BABEL and scButterfly in both 
inter-dataset scenarios (Fig. 2a, right). In the “inter-dataset 2” scenario, cells clustering 
based on brain chromatin accessibility profiles inferred by Cisformer closely resembled 
that of the measured ATAC data, while profiles generated by BABEL or scButterfly only 
distinguished microglia from other cell types (Fig. 2b). We further investigated the chro-
matin accessibility landscape surrounding the MSI2 (an RNA-binding protein gene) 
locus. A putative intronic enhancer within MSI2 exhibited astrocyte-specific openness, 
consistent with the elevated expression level of MSI2 in astrocytes. Among the three 
methods, only Cisformer accurately recapitulated the cell-type-specific chromatin acces-
sibility of this regulatory element in the brain (Fig. 2c). To further evaluate the accuracy 
of the generated chromatin accessibility profiles, we employed more direct metrics at 
the peak levels. Using precision, recall, and F1 score to assess the overlap between pre-
dicted and ground truth peaks, Cisformer exhibited comparable precision, substantially 
enhanced recall (~ 50% increase), and higher F1 scores at the cell level relative to BABEL 
and scButterfly across all evaluation scenarios (Additional file 1: Fig. S2b). A quantitative 
analysis based on Pearson correlation coefficients revealed that Cisformer’s predicted 
ATAC signals showed stronger agreement with experimental data at the cell-type level 
compared to both BABEL and scButterfly (~ 15% increase) (Additional file 1: Fig. S2c). 
These results highlight the superior predictive accuracy and generalization capacity of 
Cisformer in translating the transcriptome to the epigenome at single-cell resolution.

Given our aim to link CREs and their target genes rather than reconstruct complete 
gene expression profiles, we focused on intra-dataset prediction in the ATAC-to-RNA 
generation task. For a fair comparison, we benchmarked the generation performance 
of Cisformer against two representative methods, ArchR [12] and SCARlink [13], all of 

(See figure on next page.)
Fig. 2  Benchmarking model performance of Cisformer in cross-modality generation. a Barplots presenting 
four cell clustering metrics (AMI, NMI, ARI, and HOM) for predicted chromatin accessibility profiles by three 
models (BABEL, scButterfly, and Cisformer) in four different scenarios. b UMAP visualization of cells in the 
brain dataset using raw ATAC profiles and generated profiles from different methods. IT, intratelencephalic 
neuron; OPC, oligodendrocyte precursor cell; PVALB, PVALB+ neuron; SST, SST+ neuron; VIP, VIP+ neuron. c 
Genomic tracks for MSI2 from the brain dataset displaying aggregated chromatin accessibility signals from 
raw data and model predictions, along with gene expression distribution at the single-cell level. All track 
signals are normalized to a uniform data range (0–40). d Barplots of the mean Pearson (left) and Spearman 
(right) correlations between raw and model-predicted gene expression profiles (ArchR, SCARlink, and 
Cisformer) in three different single-cell multiome datasets (SHARE-seq K562, PBMC, and BCL). e Barplots 
showing cell clustering metrics of predicted gene expression profiles from different models in the PBMC and 
BCL datasets. f UMAP plots comparing cell clustering among raw and model-predicted RNA profiles in the 
BCL testing dataset. A mixed subset of cells in the UMAP plot for ArchR-predicted RNA values is marked by a 
black arrow. g Violin plots displaying the gene expression distribution of astrocyte-specific gene BANK1 in raw 
and model-generated RNA profiles
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which infer gene expression from chromatin accessibility to establish CRE-gene relation-
ships. Using the PBMC multiome dataset again, along with SHARE-seq data from K562 
cells (1413 cells) and B-cell lymphomas (BCL) multiome dataset (14,566 cells), Cisformer 
achieved superior or comparable performance in gene expression prediction, as assessed 
by mean gene-wise Pearson and Spearman correlation metrics between predicted and 
observed values (Fig. 2d). We also clustered cells using the inferred gene expression pro-
files, observing that Cisformer consistently outperformed ArchR and SCARlink in both 
the PBMC and BCL datasets (Fig. 2e). For the BCL dataset, Cisformer-predicted RNA 

Fig. 2  (See legend on previous page.)
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values enabled clear separation of four cell types (monocytes, normal B cells, T cells, and 
tumor B cells), while SCARlink struggled, possibly due to its gene filtering step. ArchR 
showed overall correct clustering but exhibited some mixing of a small subset of cells 
within a single group (Fig.  2f ). A similar observation was noted in the PBMC dataset 
(Additional file 1: Fig. S2d). BANK1, a potential tumor suppressor gene predominantly 
expressed in B cells [14], exhibited the highest concordance between the Cisformer-
predicted and measured RNA profiles compared to those generated by ArchR and 
SCARlink (Fig. 2g). This trend was also observed for the monocyte-specific gene CD14 
(Additional file  1: Fig. S2e). Taken together, our analyses demonstrate that Cisformer 
provides accurate inference of gene expression from chromatin accessibility profiles.

Cisformer effectively captures the regulatory effects between transcriptome 

and epigenome

To investigate whether Cisformer possesses biologically relevant model interpretabil-
ity, we extracted the attention maps between transcriptomic profiles and chromatin 
accessibility landscapes. Focusing on RNA-to-ATAC direction, we computed gene-wise 
attention scores by aggregating the attention values of associated gene-peak pairs using 
the PBMC dataset. We found that chromatin remodeler (CR) genes exhibited the high-
est attention scores, followed by transcription factor genes, while the remaining genes 
showed the lowest scores across all 11 cell types (Fig. 3a, Additional file 1: Fig. S3a). This 
observation aligns with the genome-wide impact of chromatin remodelers on chroma-
tin accessibility, as well as the more site-specific regulatory roles of TFs. Furthermore, 
we examined the concordance between attention scores of specific genes from Cis-
former and chromatin binding patterns of their corresponding proteins. We collected 
12 TF ChIP-seq datasets in CD4+ T cells, and calculated enrichment scores representing 
the relative overlap between attention score-derived peaks and the true peaks in each 
subtype (Fig. 3b). Cisformer predicted the chromatin binding sites of BCL6 and BRD4 
relatively well. To further validate this observation, we categorized all CREs into two 
groups based on the presence or absence of BCL6 or BRD4 binding sites. As expected, 
the attention scores of CREs with BCL6 or BRD4 binding were significantly higher than 

Fig. 3  Cisformer captures the interaction between gene expression and chromatin accessibility. a Boxplots 
showing normalized attention scores of CR genes, TF genes, and other genes in five cell types from the 
PBMC dataset. P values are calculated by one-sided t-test. CR, chromatin remodeler. b Heatmap displaying 
the enrichment scores of TF binding sites derived from the intersection of peaks from CD4+ T cell ChIP-seq 
data and Cisformer-inferred attention scores in four CD4+ T cell subtypes. c Boxplots comparing normalized 
attention scores between chromatin regions with and without BCL6 binding sites in CD4+ T cell subtypes. 
P values are calculated using one-sided t-test. d Boxplots showing comparison of Pearson correlation 
between gene expression values and peak signals at the cell-type level for top (100, 200, 500, and 1000) 
Cisformer-predicted CRE-gene pairs versus randomly selected pairs in the BCL dataset. P values are computed 
by one-sided t-test. e Barplots of enrichment scores for causal GWAS variants in top CREs with different 
numbers from ArchR, SCARlink, and Cisformer models. f Heatmap showing the enrichment of GWAS variants 
associated with various immune-related traits in top 100 CREs predicted by Cisformer in T cells, monocytes, 
normal B cells, and tumor B cells. g Heatmap displaying normalized attention scores for cell-type differentially 
expressed genes in the BCL dataset. h Genomic tracks of aggregated ATAC profiles and CRE attention 
scores in four cell types at the CD19 gene locus, with expression level distributions shown to the right. The 
highlighted region indicates a tumor B cell-specific enhancer linked to CD19. i Boxplots showing expression 
levels of genes linked to varying number of CREs in T cells, monocytes, normal B cells, and tumor B cells

(See figure on next page.)
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those without binding sites (Fig. 3c, Additional file 1: Fig. S3b). These two factors play 
important roles in the differentiation and function of CD4+ T cells [15, 16]. In B cells 
and monocytes, we also validated Cisformer’s ability to predict cell-type-specific TF 
binding sites based on the attention scores (Additional file 1: Fig. S3c–f). Notably, not 
all TF binding profiles could be accurately inferred by Cisformer, possibly due to the 
absence of corresponding ground truth (TF ChIP-seq data in relevant cell types). These 

Fig. 3  (See legend on previous page.)
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findings revealed that Cisformer effectively captures the relationship between genes and 
CREs when translating transcriptome to chromatin accessibility at the single-cell level.

Next, we evaluated the plausibility of the regulatory patterns learned by Cisformer 
in modeling the directional relationship from the epigenome to transcriptome. Firstly, 
we compared the correlation between peak intensity and gene expression of the top 
high-confidence CRE-gene pairs ranked by Cisformer’s attention score against ran-
domly selected pairs of the same size. In the BCL dataset, the high-confidence CRE-
gene pairs exhibited significantly stronger peak-gene expression correlations than the 
random background across all tested thresholds (Fig. 3d). This trend was also consist-
ently observed in the PBMC dataset (Additional file 1: Fig. S3g). Using the BCL multi-
ome dataset again, we prioritized CREs based on their attention scores toward nearby 
genes located within 250 kb. Compared to ArchR and SCARlink, top enhancers ranked 
by Cisformer at different cutoffs were consistently more enriched with causal GWAS 
(genome-wide association study) variants, indicating that Cisformer can reliably identify 
CRE-gene associations (Fig. 3e). Furthermore, we calculated the enrichment scores for 
the top 100 CREs concerning immune cell-related variants in each cell type (Fig. 3f ). As 
expected, the top-ranked CREs in monocytes were the most enriched with monocyte 
count-associated GWAS variants. Interestingly, genetic variants related to red blood cell 
and eosinophil count were preferentially enriched in the active CREs of tumor B cells, 
suggesting that tumor cells may hijack the regulatory programs of these two cell types 
to promote tumorigenesis. At the gene level, our analysis revealed that the aggregated 
attention scores of cell type-specific genes were highly specific to their respective cell 
types (Fig. 3g, Additional file 1: Fig. S3h). For example, CD19 exhibited relatively elevated 
expression in tumor B cells compared to the normal B cells. Consistently, an upstream 
enhancer element showed a stronger linkage to CD19, as indicated by the higher atten-
tion score in tumor B cells versus normal B cells, suggesting its cell-type-specific regula-
tory role (Fig. 3h). To further investigate Cisformer-inferred CRE-gene associations, we 
stratified genes into groups based on the number of linked CREs (ranging from 0 to 10 
or more). We observed that the gene expression levels increased with CRE count, and 
this pattern was conserved across all four cell types (Fig. 3i). Collectively, these results 
highlight that Cisformer is capable of capturing the cell-type-specific regulatory patterns 
of functional CREs in gene expression.

Cisformer uncovers transcriptional regulatory heterogeneity in the tumor 

microenvironment

To explore the scalability of Cisformer on large-scale single-cell multiome data, we 
applied it to a pan-cancer dataset encompassing over 1 million cells [17]. A total of 
144,409 cells with paired RNA-ATAC information, representing five major non-tumor 
cell types (macrophages, T cells, fibroblasts, B cells, and endothelial cells), were extracted 
from the original dataset (Fig. 4a, Additional file 1: Fig. S4a). Using OV (ovarian cancer) 
samples as the test set and samples from other cancer types as the training set, we first 
evaluated the performance of Cisformer in RNA-to-ATAC generation. Cisformer out-
performed BABEL and scButterfly across cell clustering metrics (AMI, NMI, ARI, and 
HOM), although the magnitude of improvement was modest, likely owing to the limited 
diversity of cell types (Additional file 1: Fig. S4b). Moreover, Cisformer demonstrated the 
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ability to mitigate batch effects (Additional file 1: Fig. S4c). We performed an additional 
evaluation using metrics of precision, recall, F1 score, and Pearson correlation, and dem-
onstrated that Cisformer achieved much better alignment with ground truth at both 
peak identification (Additional file 1: Fig. S4d) and signal correlations (Additional file 1: 
Fig. S4e) for each cell type compared to BABEL and scButterfly. These results indicate 
that Cisformer enables accurate generation of chromatin accessibility using gene expres-
sion profiles at single-cell resolution across large heterogeneous datasets.

Fig. 4  Cisformer uncovers cell-type-specific regulatory programs in the tumor microenvironment. a Barplots 
showing the relative cell proportion in nine different cancer types. Total cell number is listed at the top. 
UCEC, uterine corpus endometrial carcinoma; SKCM, skin cutaneous melanoma; PDAC, pancreatic ductal 
adenocarcinoma; OV, ovarian cancer; HNSCC, head and neck squamous cell carcinoma; CRC, colorectal 
cancer; CESC, cervical squamous cell carcinoma; CEAD, cervical adenocarcinoma; BRCA, breast cancer. b 
Heatmaps illustrating the normalized attention score of CREs (left) and motif enrichment of TFs (right) in 
five major cell types (T cells, B cells, macrophages, fibroblasts, and endothelial cells). TFs associated with 
the regulation of respective cell functions are marked below the heatmap. c UMAP visualization of CD8+ T 
cell subtypes (CD8+ naïve T cell, CD8+ effector T cell, and CD8+ exhausted T cell). d Heatmaps showing the 
CRE normalized attention score (left) and TF motif enrichment (right) in CD8+ T cell subtypes. TFs regulating 
each cell subtype’s function are labeled under the heatmap. e UMAP visualization of five fibroblast subtypes. 
f Heatmaps displaying cell-type-specific CREs (left) and TFs (right) in fibroblast subtypes. Inferred TFs that 
regulate cellular function of CTHRC1+ ECM-remodeling fibroblasts (eFibro_CTHRC1) are listed below the 
heatmap. g UMAP visualization of nine macrophage subtypes. h Heatmaps showing cell-type-specific CREs 
(left) and TFs (right) in macrophage subtypes. Predicted TFs involved in the regulation of SLPI+ macrophage 
(Macro_SLPI) are listed below the heatmap
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Epigenetic dysregulation involving TFs and CREs in both malignant cells and associ-
ated non-tumor cells plays crucial roles in tumorigenesis and cancer progression [18–
20]. Next, we focused on Cisformer’s capability to link CREs with their target genes 
via ATAC-to-RNA generation. Predicted RNA values from chromatin accessibility by 
Cisformer exhibited a strong correlation with the measured gene expression profiles, 
indicating its robust performance in this highly diverse dataset (Additional file  1: Fig. 
S4f ). We identified CREs for each of the five major cell types based on their attention 
scores toward target genes, followed by TF motif enrichment analysis on these cell-type-
specific CREs to uncover regulatory factors associated with cell lineages (Fig. 4b). We 
observed differential enrichment of FLI1, RUNX2, and RUNX3 binding motifs in B cell-
specific CREs. FLI1, a member of the ETS transcription factor family, modulates B cell 
development and impacts the immune response [21]. RUNX2 regulates the prolifera-
tion and survival of B cells, with its dysregulation implicated in B-cell lymphomas and 
other hematological malignancies [22]. RUNX3, another member of the RUNX family, is 
essential for the proliferation of human B cells and may function as a tumor suppressor 
[23]. Within the tumor microenvironment, we identified 33 transcription factor candi-
dates with motifs enriched in the endothelial cell-specific CREs (Fig. 4b, right). Among 
these factors, four ETS family members (ETV2, ELF1, ELF4, and ELK1) have well-estab-
lished roles in endothelial biology [24–27]. Similarly, multiple TFs previously implicated 
in T cells, macrophages, and fibroblasts were recapitulated in our analysis (Fig. 4b, right). 
These results validate Cisformer’s capacity to reveal transcriptional regulation specific to 
major cell types in the tumor microenvironment.

We then employed Cisformer to uncover differential regulatory programs at the cell 
subtype level. As a proof of concept, we investigated the regulators of T cell exhaus-
tion, a process characterized by widespread epigenetic remodeling [28]. CD8+ T cells 
were classified into three subtypes, including naïve, effector, and exhausted cells, based 
on the expression of relevant marker genes (Fig. 4c, Additional file 1: Fig. S4g). Pseudo-
time analysis by partition-based graph abstraction (PAGA) [29] further validated the cell 
annotations (Additional file 1: Fig. S4h). Using the paired RNA-ATAC profiles of these 
CD8+ T cells, we applied the trained Cisformer model to compute attention scores for 
each CRE and identified distinct subsets for each of the three cell subtypes (Fig. 4d, left). 
Motif enrichment analysis subsequently implicated 38, 66, and 53 TFs as putative regu-
lators in naïve, effector, and exhausted CD8+ T cells, respectively (Fig. 4d, right). LEF1, 
a member of the high-mobility group (HMG) family proteins, maintains CD8+ T cells in 
a naïve state by repressing cytotoxic gene expression [30]. In effector CD8+ T cells, YY1 
drives fate commitment [31], EGR1 controls cell expansion following acute lymphocytic 
choriomeningitis virus (LCMV) infection [32], and BATF3 deficiency impairs cell dif-
ferentiation [33]. For exhausted CD8+ T cells, NFATC2 [34] and NFE2L2 [35] have been 
identified as functional regulators of the exhaustion program. These results demonstrate 
that Cisformer is effective even under challenging conditions with highly similar cell 
populations.

We further applied Cisformer to investigate cell subtype-specific transcriptional regu-
latory programs in fibroblasts and macrophages within the tumor microenvironment. 
Fibroblasts were clustered and annotated into five distinct subtypes: SAA1+ quiescent 
fibroblasts (qFibro_SAA1), CTHRC1+ ECM-remodeling fibroblasts (eFibro_CTHRC1), 
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COL11A1+ ECM-remodeling fibroblasts (eFibro_COL11A1), CCL5+ antigen-present-
ing associated fibroblasts (apFibro_CCL5), and MYH11+ myofibroblasts (myoFibro_
MYH11) (Fig. 4e, Additional file 1: Fig. S4i). We then identified differentially enriched 
TF binding motifs in subtype-specific CREs (Fig. 4f ). Our analysis revealed 10 candidate 
TFs potentially regulating CTHRC1+ fibroblasts, a population implicated in immune 
suppression and tumor progression [36]. Among these factors, TCF7L2, a member of the 
T-cell factor/lymphoid enhancer factor (TCF/LEF) family, is highly expressed in fibro-
blasts and is considered a key regulator of fibroblast-to-myofibroblast differentiation 
[37], suggesting potential transition states for CTHRC1+ fibroblasts. Interestingly, bind-
ing motifs of several HOX family TFs were enriched in CTHRC1+ fibroblast-specific 
CREs. Although HOX proteins are well recognized for their crucial roles during embry-
ogenesis, features of the embryonic HOX code appear to persist in adult fibroblasts [38]. 
Similarly, we clustered macrophages into nine subtypes (Fig. 4g, Additional file 1: Fig. 
S4j). Given that SLPI is upregulated in various cancers and contributes to metastasis for-
mation, we focused on the SLPI+ macrophages subset (Macro_SLPI) [39] and uncov-
ered 18 putative regulatory TFs (Fig. 4h). ZEB1, a critical mediator of tumor-promoting 
activity in tumor-associated macrophages (TAMs) [40], and its homolog ZEB2, a master 
regulator of the TAM program [41], were among the candidate factors. Taken together, 
these results demonstrate that Cisformer effectively delineates transcriptional regula-
tory heterogeneity across both major cell types and subpopulations within the tumor 
microenvironment.

Cisformer enables characterization of aging‑associated TFs in the mouse kidney

Finally, we applied Cisformer to a mouse kidney scRNA-seq dataset from the Tabula 
Muris Senis [42], encompassing 21,647 cells with annotated age information. To gen-
erate corresponding chromatin accessibility profiles at the single-cell level, we trained 
Cisformer using a mouse kidney multiome dataset from 10X Genomics. Using the well-
trained model, we generated scATAC-seq profiles for nine cell types, each comprising 
over 500 cells from the aging kidney dataset. Again, Cisformer outperformed BABEL 
and scButterfly based on cell clustering metrics (Fig. 5a). We classified these cells into 
four major clusters: immune cells (T cells, macrophages, and B cells), fenestrated cells, 
kidney proximal epithelial cells (epithelial cells of proximal tubule and kidney proximal 
convoluted tubule epithelial cells), and kidney distal epithelial cells (kidney distal convo-
luted tubule epithelial cells, kidney loop of Henle thick ascending limb epithelial cells, 
and kidney collecting duct principal cells). The ATAC profiles predicted by Cisformer 
preserved similar cell heterogeneity to the raw RNA profiles (Fig. 5b).

To further validate the intrinsic consistency between the measured transcriptome and 
the generated chromatin accessibility profiles, we compared the inferred ages derived 
from both datasets. The expression level of Cdkn1a, a canonical marker of aging, showed 
a gradual increase with advancing age in kidney epithelial cells (Fig. 5c, left). Here, we 
grouped kidney proximal and distal epithelial cells into a single group due to their shared 
epithelial characteristics. The 30-month-old mice did not exhibit an upward trend, likely 
due to the slower senescence rate in long-living animals [42]. For the generated ATAC 
profiles, we used EpiTrace [43] to infer single-cell age. The EpiTrace-estimated age also 
increased progressively with individual age, except for the 30-month-old group in kidney 
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epithelial cells, which was consistent with the RNA-inferred age (Fig. 5c, right). Immune 
cells and fenestrated cells also showed a general consistency in single-cell ages between 
gene expression and chromatin accessibility, with ATAC-inferred ages being relatively 
stable across different groups (Additional file 1: Fig. S5a, b). Focusing on each cell sub-
type, we found that ages inferred from ATAC profiles were consistent with those meas-
ured by Cdkn1a expression only in kidney proximal convoluted tubule epithelial cells 
(PCT) and kidney loop of Henle thick ascending limb epithelial cells (TAL), suggesting 
that the epigenome of these cell types alters with aging (Fig. 5d, Additional file 1: Fig. 
S5c).

To investigate the epigenetic mechanisms underlying the aging process, we evaluated 
the association between CRE accessibility and cell age in PCT and TAL. Among CREs 
with a relatively high correlation with cell age, 4975 were PCT-specific, 2272 were spe-
cific to TAL, and 3263 were shared between both cell types (Fig. 5e). We then performed 
motif enrichment analysis on these different sets of CREs to reveal putative TFs. DNA 

Fig. 5  Cisformer identifies aging-associated TFs in the mouse kidney. a Barplots comparing cell clustering 
metrics of ATAC profiles predicted by BABEL, scButterfly, and Cisformer. b UMAP visualization of mouse kidney 
cells with raw gene expression values (left) and Cisformer-predicted chromatin accessibility profiles (right). 
c Dotplots showing Cdkn1a expression level (left) and inferred cell age (right) from Cisformer-predicted 
chromatin accessibility profiles in mouse epithelial cells across five age groups (1 month, 3 months, 
18 months, 21 months, and 30 months). Red bars denote the mean values. Cell numbers are listed below 
the plots. d Dotplots comparing inferred cell age from Cisformer-predicted ATAC profiles in kidney proximal 
convoluted tubule epithelial cells (PCTs) (left) and kidney loop of Henle thick ascending limb epithelial 
cells (TAL) (right). e Heatmaps showing the correlation between chromatin accessibility and cell age for 
PCT-specific, TAL-specific, and shared aging-associated CREs. f Volcano plots showing the enrichment of TF 
binding motifs in PCT-specific (left), TAL-specific (middle), and shared (right) CREs. Highly enriched TFs are 
labeled in the plots
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recognition motifs of the hepatocyte nuclear factor (HNF) (HNF1A, HNF1B, HNF4A, 
and HNF4G), retinoid X receptor (RXR) (RXRA, RXRB, and RXRG), and peroxisome 
proliferator-activated receptor (PPAR) (PPARA, PPARD, and PPARG) family of TFs 
were enriched in the PCT-specific CREs (Fig.  5f, left). Among these factors, PPARG 
can bind to the promoter of CDKN2A and induce its expression in human fibroblasts, 
accelerating cellular senescence [44]. In the TAL-specific CREs, DNA binding motifs of 
ZNF23, GCM1, PRDM4, and PLAGL1 were enriched. PRDM4 and PLAGL1 have been 
reported to induce cell cycle arrest in the G1 phase, suggesting a role in promoting aging 
[45, 46]. The shared CREs were preferentially enriched with ETS family motifs, including 
GABPA, FEV, ETV1, ETV4, ETV3L, and ERF (Fig. 5f, right). Emerging evidence high-
lights ETS TFs as conserved regulators of lifespan in organisms ranging from Drosophila 
to humans [47, 48]. Notably, the aging-related regulatory functions of these TFs in the 
mouse kidney system or its relevant cell types require further experimental validation. 
Collectively, these results demonstrate that Cisformer can not only accurately translate 
transcriptomic profiles into chromatin accessibility landscapes but also facilitate the 
identification of aging-associated regulators in a cell-type-specific manner.

Discussion
In this study, we develop Cisformer, a Transformer-based model specifically tailored for 
single-cell RNA-ATAC translation. Cisformer accurately predicts single-cell chroma-
tin accessibility profiles from gene expression in both intra- and inter-dataset contexts, 
particularly in cross-tissue generations, and surpasses current state-of-the-art methods. 
For inferring transcriptomic profiles from chromatin accessibility data, Cisformer estab-
lishes precise links between CREs and their target genes by leveraging cross-attention 
mechanisms in a cell-type-specific manner. It facilitates the identification of functional 
CREs and TFs, providing valuable insights into complex biological processes such as 
cancer and aging. The generative and interpretable capabilities of Cisformer enhance 
our understanding of the interplay between the transcriptome and epigenome, paving 
the way for dissecting the complex regulatory mechanisms underlying cell-type-specific 
gene expression in both physiological and pathological contexts. The deepened compre-
hension of epigenetic regulation during tumor development and progression offers sig-
nificant translational potential for advancing precision oncology and optimizing clinical 
outcomes [49, 50].

In principle, the model architecture of Cisformer is inherently flexible and can be 
adapted to model relationships between any pair of omics modalities, including combi-
nations like gene expression with DNA methylation or gene expression with TF binding 
data. For instance, in multiomics datasets that simultaneously profile gene expression 
and TF binding, Cisformer could process TF binding sites analogously to chromatin 
accessibility peaks with minimal architectural adjustments. The cross-attention mecha-
nism naturally captures long-range dependencies between distal TF-binding events and 
their target genes, similar to its current application in RNA + ATAC data. However, two 
potential challenges require consideration. First, the typically sparser coverage of experi-
mentally measured TF binding sites compared to ATAC peaks may reduce prediction 
accuracy at the single-cell level. To mitigate this, we propose integrating DNA sequence 
tokenization or motif information to guide the model’s attention toward genomic 
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regions with high binding potential. Another challenge involves the divergent regulatory 
roles of different TFs, where activating and repressive TFs may require specialized mod-
eling approaches. We envision that strategies such as TF-type-specific attention mecha-
nisms or the incorporation of prior knowledge about TF functions could help address 
this complexity.

It is worth noting that imperfect alignment between chromatin accessibility and 
gene expression states presents a fundamental challenge for cross-modality predic-
tion. Indeed, existing methods—including our method, Cisformer, as well as BABEL 
and scButterfly—typically assume a consistent relationship between ATAC and RNA 
states. However, biological asynchrony can arise. For instance, chromatin accessibility 
often precedes transcriptional activation during lineage commitment [3, 51]. To address 
these challenges, we propose a potential solution: (1) obtaining time-resolved multiome 
data that captures synchronized chromatin and transcriptional states; (2) performing 
pseudotime analysis on each modality individually, then identifying cell subsets with 
better-aligned RNA-ATAC states through flow matching between the two pseudotime 
trajectories; (3) explicitly incorporating state asynchrony into the model framework to 
better reflect biological reality. A more comprehensive evaluation of RNA-ATAC asym-
metry could be feasible with the availability of large-scale paired scMultiome data [17, 
52], which would enable the systematic identification of biological systems and cell types 
exhibiting potential epigenetic priming effects. In these systems, early chromatin signals 
could serve as predictors of impending transcriptional shifts.

Several potential improvements could further enhance Cisformer. First, training Cis-
former with a larger set of model parameters could be beneficial, particularly with the 
growing availability of single-cell multiome datasets, which would likely improve predic-
tion accuracy and generalization. Second, incorporating DNA sequence features into the 
model presents a promising avenue for future work, as much important transcriptional 
regulatory information, such as TF binding motifs, is encoded within the sequence. 
Third, with the anticipated advancement of spatial multiome datasets, exploring Cis-
former’s application to spatially resolved datasets may provide valuable insights into the 
spatial organization of gene regulation. Lastly, the computational efficiency of Cisformer 
could be further optimized to allow for faster and more scalable analyses. Even in its cur-
rent form, Cisformer already stands as a powerful method for single-cell cross-modality 
generation, and holds great potential for providing deeper insights into transcriptional 
regulatory mechanisms across various biological contexts.

Conclusions
Cisformer represents a cross-attention-based generative framework tailored for cross-
modality generation between gene expression and chromatin accessibility at single-cell 
resolution. Through its superior performance and model interpretability, Cisformer 
effectively captures the intricate interactions between regulatory landscapes and tran-
scriptional outputs, and empowers the identification of potential functional CREs and 
key TFs in critical biological processes such as tumorigenesis and organismal aging. Cis-
former emerges as a powerful tool for transcriptional regulation analysis, advancing our 
systems-level understanding of the molecular mechanism underlying both physiological 
and pathological contexts.
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Methods
Data preprocessing

Vocabulary construction and mapping

To enable cross-dataset usages, Cisformer adopts a fixed gene or peak vocabulary. All 
input paired RNA-ATAC data are first mapped onto this unified vocabulary. Specifi-
cally, we constructed the vocabulary by retrieving human genes from the Ensembl 
genome database (https://​www.​ensem​bl.​org) and CREs from the ENCODE project 
(https://​screen.​encod​eproj​ect.​org). After filtering, we retained 38,244 genes and 
1,033,239 CREs located on human autosomes to form the final vocabulary. Of note, 
we use genes or CREs directly from the mouse kidney multiome dataset as gene or 
peak vocabulary for mouse-related cross-dataset usages. In the following sections, we 
use human gene or peak vocabulary for illustration.

Gene and peak mapping and filtering

For genes from the RNA modality, we retain the original expression values present 
in both the dataset and the predefined vocabulary. Genes present in the dataset but 
absent from the vocabulary are discarded. Conversely, genes included in the vocabu-
lary but not detected in the dataset are assigned a value of 0. This allows each cell to 
be represented by a fixed-length gene expression vector of 38,244.

ATAC profiles are binarized at the vocabulary level. We assess the overlap between 
its called peaks (convert to Hg38 coordinates using liftOver [53] if necessary) and the 
predefined CREs for each cell. If a given CRE overlaps with at least 1 bp of any peak 
in the cell, it is marked as “active” (value of 1); otherwise, it is designated as “inactive” 
(value of 0). This generates a binary chromatin accessibility vector of length 1,033,239 
for each cell.

Following feature mapping, we apply quality control filters to genes, peaks, and 
cells. For each dataset, genes or peaks detected in fewer than 10 cells are removed. 
Cells expressing fewer than 200 or more than 20,000 genes, or with fewer than 500 
or more than 50,000 active peaks, are also excluded. These filtering steps are set to 
enhance the model performance.

Feature duplication and selection

The sparsity of single-cell chromatin accessibility data introduces bias during model 
training, encouraging to minimize loss by predicting uniformly low or zero across all 
loci. Furthermore, using the full set of genes and CREs as input or output for each cell 
would result in substantial memory consumption and computational inefficiencies. To 
address these challenges, we propose a novel feature duplication and selection strategy.

RNA to ATAC: For RNA modality, we randomly sample 2048 genes with non-zero 
expression values for each cell to construct the input RNA sequence. For ATAC 
modality, we randomly select 1024 active CREs and 1024 inactive CREs to form the 
target ATAC sequence. To increase the coverage of the vocabulary in training sam-
ples, this sampling step is repeated multiple times depending on the sparsity of data.

ATAC to RNA: For the ATAC modality, we randomly select 10,000 active CREs per 
cell as the input ATAC sequence. To construct the predicted RNA sequence, 3000 

https://www.ensembl.org
https://screen.encodeproject.org
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genes with non-zero expression values are randomly selected. In contrast to the RNA-
to-ATAC direction, repetition of the sampling step is unnecessary, since the number 
of selected genes or CREs is nearly equivalent to the total number of expressed genes 
or active CREs.

Cisformer model

Peak index encoding

The CRE vocabulary is exceptionally large, comprising 1,033,239 unique elements. Tra-
ditional embedding approaches would require storing a large trainable matrix of size 
(vocabulary size × embedding dimension), which is computationally expensive and 
memory-intensive. To mitigate this issue while preserving the uniqueness and independ-
ence of each token, we present a biologically informed and computationally efficient 
embedding method termed peak index encoding. This strategy proceeds as follows:

Index extraction and padding: for each CRE, we first determine its index within the 
CRE vocabulary. Given that the vocabulary contains 1,033,239 entries, the maximum 
index length is 7 digits. Each index is padded with leading zeros to ensure a fixed 7-digit 
representation. For example, index 32,488 is converted to 0032488.

Digit decomposition: the padded index is decomposed into a sequence of 7 digits, 
ordered from the most significant (millions place) to the least significant (units place). 
Using the example above, the index 0032488 is transformed into the sequence [0, 0, 3, 2, 
4, 8, 8].

Digit embedding and reconstruction: each digit (ranging from 0 to 9) is embedded 
using a shared learnable embedding matrix of shape (10, embedding_dim/7), where 
embedding_dim denotes the model’s embedding dimension. This yields a tensor of shape 
(7, embedding_dim/7) for each index sequence. The resulting tensor is then flattened to 
generate a final embedding vector of size embedding_dim.

Positional encoding

Given the relatively small number of unique gene tokens and their associated expres-
sion values compared to CREs, Cisformer employs a standard token embedding strategy 
for gene inputs. Each gene is represented by its fixed position in the gene vocabulary. It 
converts gene identifiers from textual form into integer indices, which are subsequently 
used to retrieve embeddings via the standard embedding layer. This strategy preserves 
the uniqueness of each gene while enabling efficient lookup operations.

Let G = g1, g2, . . . , gn  be the gene token sequence, and let Egene ∈ R
V×d be the gene 

embedding matrix, where V is the vocabulary size and d is the embedding dimension. 
The gene embedding is computed as:

where the indexing operation corresponds to a torch.nn.Embedding lookup.

Value embedding

Gene expression values are embedded separately and fused with the gene token embed-
dings. Strategies are applied depending on the generation direction:

Hgene = Egene[G]
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RNA to ATAC: raw gene expression values are capped at 64 to avoid extreme outliers 
and rounded down to the nearest integer:

where ei is the raw expression value of gene gi , and xi ∈ {0,1, . . . , 64} . A learnable embed-
ding matrix Eval ∈ R

65×d is used to encode the expression magnitude:

ATAC to RNA: expression value of each gene ei is first log-transformed:

Let M be the maximum transformed value across the dataset. We define 7 equal-width 
bins between 0 and M , with bin edges:

Each transformed value x′i is assigned to a bin b ∈ {0, . . . , 7} , where bin 0 is reserved 
for values where ei = 0 . The corresponding bin index is then embedded using a learnable 
embedding matrix Ebin ∈ R

8×d:

Cross‑attention mechanism

At each Transformer layer, cross-attention integrates features across two input modali-
ties (RNA and ATAC) by computing the attention of a query sequence from one modal-
ity over the key and value sequences of the other modality. Given a query matrix 
Q ∈ R

Lq×d , key matrix K ∈ R
Lk×d , and value matrix V ∈ R

Lk×d , the scaled dot-product 
attention is computed as:

In multi-head attention, this operation is performed across h parallel heads, allowing 
the model to capture information from different representation subspaces:

where WO is the weight matrix.
After computing attention, residual connections and layer normalization are applied:

xi = min(⌊ei⌋, 64)

Hval = Eval[x]

x′i = log(1+ ei)

B =
{
0 = b0 < b1 < · · · < b7 = M

}
, bk =

k

7
·M

Hval = Ebin[b]

Attention(Q,K, V) = softmax

(
QK⊤
√
d

)
V

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

headi = Attention
(
QW

Q
i , KW

K
i , VW

V
i

)

H′ = LayerNorm(H+MultiHead(Q,K, V))
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Position‑wise feedforward network (FFN)

Each Transformer block comprises a two-layer feedforward neural network applied 
independently to each token:

It is followed by a second residual connection and normalization step:

Memory‑efficient attention with FlashAttention2

To further reduce the computational overhead and memory usage during model 
training, Cisformer adopts FlashAttention2, a state-of-the-art algorithm for memory-
efficient attention computation [54]. Unlike the standard attention mechanism that 
materializes large attention matrices, FlashAttention2 performs the softmax and 
matrix multiplication in a fused and block-wise streaming manner. It significantly 
reduces memory usage and improves throughput on modern GPU architectures.

Parameter settings

Cisformer uses the same model architecture for both RNA-to-ATAC and ATAC-
to-RNA generation tasks, but adopts task-specific parameter settings and training 
strategies.

From RNA to ATAC, we use 6 cross-attention layers, a 210 embedding dimension, 
and 6 attention heads. Each RNA and ATAC sequence is truncated or subsampled 
to a fixed length of 2048 tokens. RNA sequences are embedded by combining posi-
tional encodings and value embeddings, while ATAC sequences are represented via 
peak index encoding and serve as the query for attention computation. The output 
sequences are processed through a single-layer MLP (multi-layer perceptron) with a 
sigmoid activation function to generate binary probabilities for ATAC peaks.

From ATAC to RNA, we adopt 4 cross-attention layers, 280 embedding dimensions, 
and 7 attention heads. Each ATAC sequence is capped at 10,000 and embedded by 
peak index encoding.

Each RNA sequence is limited to a maximum of 3000, and represented using posi-
tional encoding. The output from Transformer layers is passed through an MLP to 
produce a prediction matrix of shape 3000 × 8. Each row of the output matrix repre-
sents the predicted bin probabilities corresponding to the expression level of a gene, 
with expression values categorized into 8 discrete expression bins.

Loss functions

Cisformer employs two types of loss functions depending on the prediction task: 
binary cross-entropy (BCE) loss for RNA-to-ATAC prediction and categorical cross-
entropy (CCE) loss for ATAC-to-RNA prediction.

FFN(x) = max(0, xW1 + b1)W2 + b2

Hout = LayerNorm
(
H′ + FFN

(
H′))
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For predicting the binary status (active or inactive) of ATAC peaks, the BCE loss is 
used. Given the predicted probability ŷi and the true label yi ∈ {0,1} for each peak i , 
the BCE loss is defined as:

where N denotes the number of peaks.
For predicting gene expression levels discretized into 8 bins, the CCE loss is used. 

Given the predicted probability vector ŷi ∈ R
8 for each gene i , and the one-hot encoded 

ground truth label vector yi ∈ {0,1}8 , the CCE loss is defined as:

where M is the number of predicted genes, c is index of the expression bin, and yi,c is 1 if 
gene i belongs to bin c , and 0 otherwise.

Cisformer training

Cisformer is trained using the Adam optimizer [55] for both RNA-to-ATAC and ATAC-
to-RNA directions. A StepLR scheduler from PyTorch [56] is employed to decay the 
learning rate periodically, and gradient clipping with a maximum norm of 1 is applied to 
prevent gradient explosion.

For the RNA-to-ATAC direction, the initial maximum learning rate is set to 1× 10−3 , 
and the learning rate decays by a factor of 0.9 every 5 epochs. We use training batch size 
of 16, and apply early stopping based on the validation loss. Training is terminated if no 
improvement is observed for five consecutive epochs. For the ATAC-to-RNA direction, 
we set the initial maximum learning rate to 5× 10−4 , and the training batch size to 96. 
The learning rate decays by a factor of 0.6 every 4 epochs. Training step is terminated if 
the validation loss does not decrease for two consecutive epochs.

To enhance training efficiency and reduce memory consumption, mixed-precision 
training (FP16) is adopted, utilizing the default FP16 policy provided by the Hugging 
Face Accelerate framework (https://​github.​com/​huggi​ngface/​accel​erate). Model training 
is conducted in a distributed fashion across at least two NVIDIA A800 GPUs. During 
training, model checkpoints are saved at the end of every epoch, provided that the early 
stopping condition is not triggered at that epoch. The saved checkpoints store the model 
weights, the optimizer state, and the learning rate scheduler state, allowing training to be 
resumed if interrupted. Among all saved checkpoints, the one corresponding to the low-
est validation loss is selected as the final model for downstream evaluation and testing.

Cisformer prediction

In the RNA-to-ATAC generation task, the primary goal is to generate complete 
scATAC-seq profiles solely based on scRNA-seq input. To maximize predictive cover-
age, we increase the input RNA sequence length to the max number of expressed genes 
in a cell from scRNA-seq data and perform ATAC peak prediction across all CREs 
from scATAC-seq data. Each predicted CRE is assigned a probability between 0 and 1 

LBCE = −
1

N

∑N

i=1
[yilog

(
ŷi
)
+ (1− yi)log(1− ŷi)]

LCCE = −
1

M

∑M

i=1

∑8

c=1
yi,clog

(
ŷi,c

)

https://github.com/huggingface/accelerate
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computed via the sigmoid activation function. Predicted probability more than 0.5 is set 
to 1, and 0 otherwise.

In the ATAC-to-RNA prediction task, Cisformer is designed to predict a fixed-length 
subset of nonzero gene expression profiles (default maximum: 3000 genes, adjustable 
depending on dataset size). In this setting, the emphasis is not on reconstructing com-
plete gene expression profiles but rather on accurately modeling the regulatory links 
between CREs and genes.

Cisformer evaluation

To assess model performance in translating gene expression into chromatin accessibility, 
we compare Cisformer against BABEL and scButterfly, which are two state-of-the-art 
cross-modal prediction methods. All models are trained on the same training dataset 
and evaluated on the same test set. The predicted peak matrices are analyzed using Sna-
pATAC2 [57], and cell clustering quality is evaluated by computing AMI, NMI, ARI, and 
HOM. In addition, we use precision, recall, and F1 score to assess the accuracy of peak 
identification at the cell level, and apply the Pearson correlation coefficient to evaluate 
the consistency between predicted and experimentally measured signal intensities at the 
cell-type level.

For ATAC-to-RNA prediction, Cisformer is benchmarked against ArchR and Scarlink, 
two leading tools capable of inferring regulatory connections from single-cell multi-
ome data. To ensure a fair comparison, predictions from ArchR and Scarlink are post-
processed. Genes with a true expression level of 0 are manually assigned a value of 0 
in the predicting outcomes. All predicted gene expression profiles are processed using 
the Scanpy pipeline [58] for cell clustering and the uniform manifold approximation and 
projection (UMAP) visualization. Cell clustering quality is evaluated by AMI, NMI, ARI, 
and HOM. To validate CRE-gene pairs predicted by Cisformer, we compute the Pearson 
correlation coefficient between gene expression and peak intensity at the cell sub-type 
level using the Scanpy pipeline [58].

Attention matrix generation and normalization

For the ATAC-to-RNA translation task, the cross-attention score between the key matrix 
K (encoded from CRE inputs) and the query matrix Q (encoded from gene inputs) can 
be interpreted as the regulatory strength of CREs on genes. Formally, the raw attention 
A is computed as:

where d denotes the dimensionality of the model embeddings.
Since regulatory elements typically influence nearby genes, attention calculations are 

restricted to CREs within ± 250 kb of each gene. We first identify these CREs and store 
them in a mask dictionary. Then we randomly sample 100 cells to build a representative 
attention matrix for each cell type. For each sampled cell, we compute the average atten-
tion across all heads to obtain a single matrix. To ensure comparability across cells, rank 
normalization is performed both row-wise and column-wise on each cell’s attention 

A = softmax

(
QKT

√
d

)
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matrix, followed by min–max normalization to scale the attention values between 0 
and 1. Using the constructed mask dictionary, the attention matrix is aggregated at the 
cell type level for selected CREs. The attention scores, either gene-wise or CRE-wise, 
are derived from the attention matrix as needed. In the RNA-to-ATAC direction, the 
general steps of attention matrix processing follow the same procedure as in the ATAC-
to-RNA direction, with minor modifications. In this case, the key matrix K  is derived 
from gene inputs, and the query matrix Q is encoded from CRE inputs. Additionally, no 
filtering of CREs is performed, and log normalization is applied in place of rank normali-
zation. The gene-wise attention scores are derived from the attention matrix as needed.

Cisformer Inferred peak enrichment

To compare the attention scores of TF genes inferred from Cisformer with correspond-
ing protein chromatin binding profiles, we first collect ChIP-seq datasets for major cell 
types (CD4+ T cells, B cells, and monocytes) from the ReMap database [59], which 
serves as an approximate ground truth. The enrichment score is calculated as the ratio 
of overlap between the true peak sets and attention score-derived or randomly shuffled 
peak sets for each cell subtype. Attention score-derived peaks correspond to the top 
10,000 peaks ranked by gene-wise attention scores.

Causal GWAS variant enrichment

To systematically assess the accuracy of CRE–gene associations inferred by Cisformer, 
we use a fine-mapped GWAS variant dataset from the UK Biobank, covering 94 traits 
and 693,744 variants. For each CRE, we calculate the sum of attention scores to all genes 
located within ± 250  kb. The top-ranked CREs are then considered as potential func-
tional CREs. To quantify enrichment, we compute the mean posterior inclusion prob-
ability (PIP) of variants falling on the selected CREs and compare it to the mean PIP of 
an equal number of variants randomly sampled. The causal GWAS variant enrichment 
score is defined as follows:

For each GWAS trait, we calculate a trait-specific enrichment score, and the average 
across all traits is taken as the final enrichment score for the dataset. The cell-type-spe-
cific enrichment score can be computed using the aggregated attention matrix of each 
respective cell type.

CRE number determination

To investigate the relationship between gene expression levels and the number of 
strongly associated CREs, we first determine a significance cutoff for CRE–gene links 
by taking the 90th percentile of all CRE–gene attention scores within each cell type. For 
each gene, we count the CREs whose regulatory strength toward the gene exceeded this 
cutoff. Genes are then categorized into 12 groups based on the CRE number (from 0 to 
10, and 10 +). For each group, we show the distribution of gene expression levels using 
the log1p-transformed expression values.

Enrichment score =
Mean PIP of variants on top CREs

Mean PIP of variants on random CREs
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Cell‑Type‑Specific transcription factor identification

To identify cell-type-specific transcription factors, we first aggregate CRE–gene regu-
latory strength by summing the attention scores from each CRE to nearby genes 
within ± 250 kb for each cell type. These summed attention scores of CREs across cell 
types are assembled into a CRE-by-cell-type matrix. For each CRE, we normalize the 
values across cell types to the range from − 1 to 1 based on its minimum and maximum 
values, and divide the range into five equal intervals, assigning a rank from 1 to 5 accord-
ingly. We identify CREs that achieved the highest rank exclusively in a single cell type 
as cell-type-specific CREs. TF motif enrichment analysis for identification of cell-type-
specific regulatory factors is performed using the tl.motif_enrichment function from 
SnapATAC2 [57].

Aging‑related CRE and transcription factor identification

We use Epitrace [43] to estimate cell age from Cisformer-inferred scATAC-seq data, and 
compute CRE-age association by the AssociationOfPeaksToAge function for two mouse 
kidney epithelial cell types (TAL and PCT). CREs are clustered into four groups using 
the K-means clustering algorithm, and three clusters with high correlation in at least one 
cell type are selected (PCT-specific CREs, TAL-specific CREs, and shared CREs). Motif 
enrichment analysis is performed using SnapATAC2 [57] to identify cell-type-specific 
and aging-associated transcription factors.
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