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Althoughimmune checkpoint blockade (ICB) therapies have shifted the
treatment paradigm for non-small-cell lung cancer (NSCLC), many patients
remain resistant. Here we characterize the tumor cell states and spatial
cellular compositions of the NSCLC tumor microenvironment (TME)

by analyzing single-cell transcriptomes of 232,080 cells and spatially
resolved transcriptomes of tumors from 19 patients before and after ICB-
chemotherapy. We find that tumor cells and secreted phosphoprotein
1-positive macrophages interact with collagen type Xl alpha1chain-positive
cancer-associated fibroblasts to stimulate the deposition and entanglement
of collagen fibers at tumor boundaries, obstructing T cell infiltration

and leading to poor prognosis. We also reveal distinct states of tertiary
lymphoid structures (TLSs) in the TME. Activated TLSs are associated with
improved prognosis, whereas a hypoxic microenvironment appears to
suppress TLS development and is associated with poor prognosis. Our study
provides novelinsights into different cellular and molecular components
corresponding to NSCLC ICB-chemotherapeutic responsiveness, which will
benefit future individualized immuno-chemotherapy.

Immune checkpoint blockade (ICB) treatments have revolutionized
non-small-cell lung cancer (NSCLC) care, even curing some patients
with advanced-stage disease'°. Neoadjuvantimmuno-chemotherapy
has shown greater effectiveness than ICB alone, with a response rate
averaging 32% (18-63%)’. Many patients with NSCLC remain resistant to
neoadjuvantimmuno-chemotherapy and the molecular mechanisms
behind this resistance are still unclear.

The tumor microenvironment (TME) includes diverseimmune and
stromal cells that contribute to tumor growth and immune escape®.

Given the cell type diversity in the TME, pioneering studies have used
single-cell RNA sequencing (scRNA-seq) to identify features linked
to immunotherapy resistance. A recent study on NSCLC following
neoadjuvant programmed cell death protein 1 (PD-1) blockade found
thattissue-resident T cells are abundantinlung cancer TMEs but have
reduced function’. Another study identified that a subset of dysfunc-
tional CD8" T cells experience clonal revival after PD-1 blockade in
NSCLC™. These studies collectively indicate that although neoadjuvant
ICB therapy could partially reprogram the TME and increase CD8" T cell
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infiltration, the environment remains somewhat suppressive, limiting
long-term effectiveness. This underscores the need to explore other
TME-associated cell types, such as stromal cells.

Although scRNA-seq hasrevealed crucial insights into TME hetero-
geneity across various cancers, its limitation lies in the loss of spatial
and morphological information, making it challenging to study cell
colocalizationand construct spatial architectures of TME. For example,
tertiary lymphoid structures (TLSs) are crucial for T cell priming, B cell
activation and T and B cell differentiation'"2. TLSs are positively cor-
related with prognosisin most solid tumors and can predict responses
to ICB therapies™'. However, most scRNA-seq studies have not yet
elucidated the geometricstructures of TLSs or the mechanisms behind
their formation, maturation and function in the TME, due to the lack
of spatial organization information for Band T cells.

Inthis study, weintegrate scRNA-seq and spatial transcriptomics to
profile the cellular composition and spatial organization of tumor cells
and the microenvironment before and after neoadjuvant ICB-chemo-
therapy in both responders and non-responders. We identify cancer
cellstatesand important spatial compositions of stromal and immune
cell types associated with poor responses to ICB-chemotherapy.
Through computational analyses, we investigate the maturation pro-
cesses and potential functions of TLSs in NSCLC. Our study provides
novelinsightsinto the complex NSCLC ecosystem and identifies poten-
tial biomarkers for future combinatorial therapies.

Results
Study design and overview of the study cohort
To reveal alterations in NSCLC before and after ICB-chemotherapy,
we employed scRNA-seq to profile 26 tumor samples from 19 patients
with NSCLC before and after neoadjuvant therapy of anti-PD-1and
chemotherapy (Fig. 1a,b). Based on pathologic assessment, which is
reliablein assessing ICB-chemotherapy treatment efficacy and predict-
ing survival'¢, six patients were classified as responders (including
five with a pathologically complete response (pCR) and one with a
major pathologic response (MPR)) and the remaining 13 patients were
non-responders (having exhibited a non-major pathologic response
(NMPR)) (Fig. 1b). Three responders and four non-responders had
matched pre- and post-treatment tumor specimens (Fig. 1b). After
quality control, we derived transcriptomes 0f 232,080 individual cells,
with amedian of 2,645 reads and 1,205 genes captured per cell. Unsu-
pervised clustering analyses were performed to decipher the cellular
compositions, and canonical cell-type-specific markers were used for
cell type annotation (Fig. 1c,d and Extended Data Figs. 1a,f and 2a-f).
We obtained 64,947 epithelial cells that formed two distinct
major clusters (Fig. 1c), presumably representing normal and malig-
nant cells with different transcriptomic features. To better charac-
terize the heterogeneity of epithelial cells, we re-clustered these
cells. We separated normal and malignant cells based on their copy

number variations (CNVs) using InferCNV" (Fig. le and Extended Data
Fig.1b,c). Unsupervised analyses identified 21 epithelial subclusters:
eight normal with distinct markers and 13 malignant (Extended Data
Fig.1d,e). In the epithelial cell compartment, malignant cells were
essentially eliminated in responders following ICB-chemotherapy
(Fig. 1e). We also observed alterations within the immune and stro-
mal compartments (Extended Data Fig. 1g). In the immune cell com-
partment, post-treatment non-responders exhibited an increased
fraction of monocytes/macrophages and dendritic cells compared
with pre-treatment levels (Fig. 1f). Furthermore, in the CD31 stro-
mal cell compartment, the proportion of collagen type Xl alpha 1
chain-positive (COL11A1") cancer-associated fibroblasts (CAFs) was
significantly higher in non-responders compared with responders,
bothatbaseline and post-treatment (Fig. 1g). These results suggested
the potential roles of such cells in affecting the responsiveness to
ICB-chemotherapy. Although scRNA-seq provided valuable insights
into the cellular compositions of the NSCLC TME, it lacked informa-
tion on the spatial distribution of cells within the tumor. Therefore,
we performed spatial transcriptomic analyses using the GeoMx digital
spatial profiler (DSP) platform and 10x Genomics Visium platform,
respectively, on 14 treatment-naive specimens and 17 post-treatment
specimens (Fig. 1b,h,i). In-depth analysis of scRNA-seq and spatial
transcriptomics revealed several intriguing findings, as detailed in
the following sections.

Defining cancer cell states related to treatment outcomes
Transcriptional heterogeneity in tumorsisincreasingly considered the
foundation supporting tumor initiation, progression, metastasis and
treatment resistance. Recent research hasidentified gene modules as
the key characteristics that define cell states'® ", Utilizing scRNA-seq
data, weinitially examined the cell states of cancer cells. Through Har-
mony, we classified these cells into 14 subsets and annotated themvia
gene set enrichment analysis, with highly expressed markers (Fig.2a,b).

The cell states clustered into two groups: one comprising inter-
feron (IFN), alveolar, estrogen, extracellular matrix and coagulation
cell states and the other comprising squamous, nuclear factor eryth-
roid 2-related factor 2 (NRF2) target and cell-cycle-related cell states
(Fig. 2c). Cancer cell state scores in these two groups were strongly
anticorrelated (Fig. 2c). Some cancer cell state scores (for example,
hypoxia, squamous, cell cycle, E2F target, NRF2 target and Myc tar-
get scores) were associated with poor survival across patients from
The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD)
cohort (Fig.2d). Conversely, cancer cell states including coagulation,
alveolar, extracellular matrix, estrogen and IFN were linked to pro-
longed survival.

Toinvestigate the role of cancer cell states in treatment, we com-
pared cell state scores of cancer cells during immunotherapy using
scRNA-seqdata. We found that the NRF2 target score was significantly

Fig.1| Cellular and molecular characterization of NSCLC tissues before

and after ICB-chemotherapy using combined scRNA-seq and spatial
transcriptomic analysis. a, Workflow of the research design. b, Sample
information for each patient who participated in this study. The dots for each
associated assay indicate data availability. c, UMAP plot of all 232,080 cells
from all sequenced samples, color coded to indicate the major cell lineages.

d, UMAP plots of T, B, monocyte/macrophage (mono/macro), CD31" stromal,
dendritic (DC) and endothelial cells, color coded to indicate subpopulations.

e, UMAP plot of epithelium cells, color coded green and brown to indicate
normal and malignant cells, respectively. f, Boxplot demonstrating the fractions
ofimmune cell subtypes in matched samples from three responders and four
non-responders at baseline (before treatment) and post-treatment. The center
lines indicate median values and the lower and upper hinges represent 25th and
75th percentiles, respectively. The whiskers denote 1.5x the interquartile range.
A one-sided Wilcoxon test was used to determine statistical significance.

g, Boxplot showing the fractions of fibroblast subtypesin the CD31" stromal

lineage in matched samples from three responders and four non-responders at
baseline and post-treatment. A one-sided Wilcoxon test was used to determine
statistical significance. h, Left, NanoString GeoMx DSP spatial transcriptomics
analysis of specimens from the treatment-naive cohort (n = 14). Right, selection
of the ROIs: PANCK® (tumor); a-SMA* and adjacent tumor (boundary); a-SMA™
and far from tumor (stromal); and CD20" (lymphocyte aggregation (LA)). Scale
bars, 50 pm. i, H&E staining of the specimens undergoing spatial transcriptomics
using Visium (10x Genomics), from the cohort receiving immunotherapy
(n=17).Scale bars,1 mm. AM, alveolar macrophage; cDC1/2 cell, conventional
type 1/2 dendritic cells; GC, germinal center; ILC, innate lymphoid cells; LUSC,
lung squamous cell carcinoma; LUAD, lung adenocarcinoma; mregDC, mature
dendritic cell enriched inimmunoregulatory molecules; NK, natural killer; pDC,
plasmacytoid dendritic cell; PostNR, post-treatment non-responders; PostR,
post-treatment responders; PreNR, pre-treatment non-responders; PreR, pre-
treatment responders; SMC, smooth muscle cell; ST, spatial transcriptomics; T,
cell, regulatory T cell. Panel a created with BioRender.com.
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higherin pre-treatment non-responders compared with pre-treatment
responders, whereas the IFNy score exhibited an opposite trend
(Fig. 2e). This suggests that biological features of cancer cells may
influence the clinical outcomes ofimmunotherapy. Using the DSP data,
we examined pre-treatment tumor cell states. Similar to the cell state
scores, the related genes of IFNy and NRF2 targets were significantly
enrichedinresponders and non-responders, respectively (Fig. 2f,g). We
further exploredthe spatial relationship between these two cell states

and other cell types (Fig. 2h). The IFNy score showed a positive correla-
tion, whereas the NRF2 target score exhibited a negative correlation,
with the proportion of adjacentimmune cells (Fig. 2h,i). This suggests
potential roles for cancer cell states in shaping the diverse TME.

Spatial maps of cellular compositions of NSCLC
To investigate the spatial organization and interactions of cellular
components, we classified the post-treatment TME using Visium data.

a b
NN N NN N W Psthologic response
Patients with NSCLC (n =19) Time points Sequencing Sex
bl I B pethology
iiiiiitie ¢ A ‘ . " eee occccccccccoe
’ Bulk RNA-seq
eoo0o000®0 0O Biopsy |
""""' E{k RNA-seq ® 000000 scRNA-seq
PD-1 inhibitor P < Fol s mnizl:) o 0000000000 OO ® ST (GeoMX)
+ chemotherapy ’ SCRNA-seq ST (Visium)
H&E
AAR Asssss S Q/ = SYQIWORNRPAOCNDIWON DO
T 111111 BeggeefgParaacaanan
® o eoo0o00o0 PS q%:@
'" m"' Surgery Pathologic response  Sex Pathology Data avaliable
Responder Non-responder Spatial transcriptomics B MPR [l NMPR Female LUAD @ Before treatment
pCR Male B LusCc After treatment
c d :
Epitheli Tcells CD31 stromal DC
ithelium
P 1 Treg @ COLNAT CAF @ cDCI
@ CXCL13"'CD4' T @ ADH1B' CAF 2 mregDC w o
8 TCF7'CDA'T @ Pericyte @ cDC2 P i
CD31" stromal 4 ILC ) @ MYHTT pericyte @ pDC i
5 CyclingT SMC . R -
i 6 NRAA2® CD4* T Endothelium -:-'g;
20 7 NG cparT  © BCHE'SMC @ venule
i :-'_ > 8 GNLY* NK Mono/macro o Qapillary T cells CD31” stromal
» © FCGR3A'NK @ AM ® Tip
¥, @ GZMK* CD8* T @ CCL18* Macro @ Artery
: @ HAVCR2 CDg' T @ CHISLT" Macro ® Lymphatic
4 SPP1" Macro
o~
a Bcells @ CXCL3*Macro
s ) Memory B 6 SELENOP* Macro «
=) Mono/macro @ Naive B @ CXCL9*Macro %
8 cC B 8 FCGR3A"Mono % B cells Endothelium
Endothelium 4 Cycling B 9 VEGFA*Mono UMAP 1
UMAP 1
e f g P=0.029
Matched cohort P=0.029
Epithelium 80 1 - 80 4
9 3 PreR(n=23) P=0.029 T
7 Bid < E3 PreNR (n = 4) P=0.050 =
oo ma 3 601 £3 PostR (n = 3) i & o |P-0029
< o PostNR (n = 4) = -
i L 2 P=0.015 53 r
] ki 2 40 & = L SE 40
__InferCNV| — PreNR PostNR £ P=0.029 N | 35 I
Malignant 2 2 S _ l D . &8 1
2 Normal . § 207 ' P=0.015 é N < g 20 VJ
~ v ¥ K . ° - . T &) S =
z ' EO@'»Q =2% Olla 2 S o L EY BPe
= L3 3 1
2 . . . . . . . : .
UMAP 1 B DC Mast Mono/Macro  Plasma T Neutrophil ADH1B’ CAFs  COL11A1" CAFs
o Boundary Stromal
a -
o
=
kel
©
Q
E
]
(4
<
=
a
N
1
w
e A
- ~ i - - - - - - - - - - - - - - g
PO1 P02 PO3 PO4 PO5 PO6 PO7 PO8 P9 P10 P P12 P15 P16 P17 P18 P19

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01998-y

a b
® OXPHOS e- © v e @ o . . Y I ) s e e . . . . e @ Percent
® INFo o o o o - - e e L o - @ e e - e @ expressed
©® NRF2 targets ®106 0 - o . - - 0@ - e @ o - - o . e o s o
©® E2F targets e ® & - o 0 o ® ¢ 0 - - o o - . o e o . 25
® Cellcycle @1 ® ® ¢+ o 0 o o+ . ® - + o o - . o . Py °
® Myc targets @]le® @ - o & o ¢ o . @ @ + o e & . . . - PY ® s
® Squamous e ©® o ¢+ o ® 0o - - - - OO ® o . .. . . P )
® Hypoxia e ® @ + o+ @ 0 + + + - @ @ - o . . . . Y Averagg
® ECM @] - ¢ o o @ o P ) - . o e . . e expression
@ INFy @l o © - o ® 0 + - o+ - 0@ e e e e - o . e ® -2
© Estrogen O@fe+ o o 0o @ o - . P ) e e e e . s - o @ 1
o ©® Alveolar ‘ ol e @ ¢+ ¢« 0 ¢ + .+ + . @ @ Ce e e e ° . e @ 0
<§( ° Cpagulanon o 0o 0 06 06 0 o - .00 e o o . . e @ - o 0 -1
=) ® Ribosome o1 ® ® - - @ o - - ® ® - - o . .« . .
UMAP" T T T T T T T T T T T T T T T T T T T T T T T T T T T T
O D B DA DD FS DD PR SR O W@ I & > DD
G B0 TP P o P N L & Qe O0F & 07 N R ¢ KR K Y
N P & XL 9 & KL VR A < N 2K
O \V@z‘gbv@«oo SF I Sy 06 v W O N
INF d e NRF2 targets INFy
Y
Estrogen - P=0.400 P=0120
Coagulation 21 28, 3 .| P=0080 P=0047 .
Alveolar w2083 = 104 roup
o D0 0 ® c = = = =
INFa CI) ] g iy % X 2 P=0.029 P=0390 P=0029 P=0150 1 PreR(n=3)
ECM B $2xx338 B
; 2 50523883 =% g £ PreNR (n = 4)
Hypoxia S o ” c 957 £+ PostR (n=6)
NRF2 targets & |§835£L8 J, ° %= £ PoStNR (n=13)
' 23mmPZE=o 5 N 0stNR (n =
Squamous Pearson g 22 % 8 3 : M
OXPHOS correlation ' 2< 4 = 2 o o
Ribosome l o5 248 £ &
Myc targets = Z
-0 Outcome 38 =+
E2F targets ] | d .
I cycle l 05 - mprove 05
Celley — Worse
L QL VN B8BTS B 5 S C >
=3 < o
CEEECd8RE585S
s s 32 RS S ==
=328 8 o0ox @ B > =23 &
L 020 g~ T <24
Oqz& ™ S
= % O
. . NRF2 targets
° ; ; e X . CD31" stromal
6 ! ¢ e S!gn!f!cantly enr!ched !n NR Endothelium
° ' @ Significantly enriched in R o
(] | | o NRF2 target module gene Normal epithelium
HLA-DPA1 oo | | INFy module gene B
o B HieDPBI ; | Neutrophil
' '
HLA-DRA <* o . . INFy
co74 L4 4 ! ! ABCCS DC Pearson
4 ! . oo Mono/macro correlation
N ; Plasma ! 0.5
B
Yy | Mast 1 0
2 SRGN 1 _
2 ' AKRICT T I 05
T ALOXBAP < * -3 ® 00 T OGEE B2
COROTA < S E£Eo00z% E35 EY
®  PERP KRT5 =8¢ =9 58s g2
21 ol =5 3 Epil
(% [
GeLe 5 z o8 &
. LDH3A1 = [i] 8 =z
. CALML3 "
! ! 1 INFy score Adjacent mono/macro
[ | TN B Hich [ ———. O.16
I by i A { T R
! \ Up in non-responders . ] %
0 - Up in responders ! ! J b = i Py
T : T : T ] ‘ ‘u' % ] §
-3 0 3 i . g e ¥, &
log,[fold change] g
' - = [
g T Fo o 1 3
0.0028 0.01M1 2 1 % &
— 1 K & r =i
: 2‘ | Low - :‘, St | 0
05 o 2 Adjacent DC
® 024 = High T ey meer e 0.08
§ @ o i i ®
o o ® b ]
o 04+ o o 4, o
o @ a E i [}
g z . i g
S z o 8 8
o 1
o
Z 03 L . %
- o
- o
-0.24 | :" . o
(O — "—.'7 | i @
PreR  PreNR PreR  PreNR -
(n=4) (n=9) (n=4) (n=9)

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01998-y

Fig. 2| Cell states of cancer cells potentially define the response to
ICB-chemotherapy. a, UMAP plot showing cancer cells colored by cancer cell
state. b, Dot plot displaying the average expression and expressed percentage
of representative markers of each cancer cell state. ¢, Pearson’s correlation of
cancer cell state scores. d, Lollipop plot showing P values from Cox regression
analysis linking cancer cell states to the clinical outcomes of patients from the
TCGA-LUAD cohort. e, Boxplots showing the cell state scores for NRF2 targets
(left) and IFNy (right) in malignant cells from responders and non-responders
during treatment. Sample numbers were as follows: n =3 (PreR) n =4 (PreNR),
n=6(PostR) and n =13 (PostNR). A one-sided Wilcoxon test was used to
determine statistical significance. f, Volcano plot comparing responders’and
non-responders’ adjusted P values and fold changes across tumor ROIs.

Atwo-sided Wilcoxon test was used to determine statistical significance.

g, Boxplot showing the cell state scores for NRF2 targets (left) and IFNy (right) in
tumor ROIs from responders (n = 4) and non-responders (n = 9) before treatment
using DSP data. A two-sided Wilcoxon test was used to determine statistical
significance. h, Pearson’s correlation of cell state scores (for NRF2 targets, IFNy
and adjacent cell types) across all malignant spots from Visiumslides. i, Spatial
distributions of IFNy scores, NRF2 target scores and the abundances of adjacent
monocytes/macrophages and dendritic cells in the TME of PO3. Scale bars, 1 mm.
Ineand g, center lines indicate median values and the lower and upper hinges
represent 25th and 75th percentiles, respectively. The whiskers denote 1.5x the
interquartile range. ECM, extracellular matrix; TNF, tumor necrosis factor.

Four distinct regions were classified based on hematoxylin and eosin
(H&E) staining and definitions of tumor compartments from previous
studies?: tumor cores, invasive margins, isolated tumors and tumor
stromal regions (Fig. 3a). As each spot froma Visiumslide represents a
mixture of cells, we performed cell type deconvolution analyses based
on matched scRNA-seq data using STRIDE”. Consistent with the H&E
images, tumor cores were predominately occupied by malignant cells,
whereas the invasive margins and isolated tumors contained both
malignantand nonmalignant cells. There were almost no visible malig-
nant cells in tumor stromal regions (Fig. 3a).

Unsupervised clustering of all spatial transcriptomics spots
based on cell type composition identified 15 distinct cell type con-
texts (Fig. 3b). We hypothesized that these contexts represent
potential spatial architecture that could be shared across patients,
facilitating comparisons among different samples. We observed
three malignancy-related cell type contexts (3, 10 and 13) and two
fibroblastic cell type contexts (4 (enriched alcohol dehydrogenase
1B-positive (ADH1B") CAFs) and 8 (enriched COL11A1" CAFs)), as well as
fourimmune cell type contexts (1,7, 9 and 12) (Fig. 3c,d and Extended
DataFig.3a).

Spatial visualization of the contexts revealed valuable insights
into their positional relationships and correlation with spatial archi-
tecture. For example, malignancy-related contexts 3 and 13 were sur-
rounded by fibroblastic context 8, implying that tumor cells interact
with fibroblasts at tumor boundaries (Fig. 3e). Additionally, the posi-
tion of cell type context 9, enriched with germinal center B cells and
CD4"CXCL13" T cells, corresponded to the position of lymphocyte
aggregation (Fig. 3e and Extended Data Fig. 3a). These results provide
additional insight into cellular compositions at tumor boundaries, as
well as the spatial architectures of immune cells.

COL11AT" CAFs exhibit a pro-tumor phenotype
Since COL11A1*and ADH1B* CAFs showed different enrichment patterns
inresponders versus non-responders (Fig.1g), we further explored the
potential functions of the two distinct CAF subtypes. Previous studies
categorized CAFsinto two classes with different phenotypes in cancers:
pro-tumor myofibroblastic CAFs (myCAFs) and inflammatory CAFs
(iCAFs)*. ADHI1B* CAFs showed strong iCAF signatures and exhibited
higher enrichment in tumor necrosis factor signaling and metabolic
programs (Extended Data Fig. 4a,b).

Conversely, COL11A1" CAFs were characterized by a pro-tumor
myCAF phenotype, including heightened expression of extracellular
matrix genes (FAP, POSTN and CTHRCI) and activated fibroblast markers

such as GREMI (Extended Data Figs. 2d and 4a). Gene set enrichment
analysis revealed that gene signatures related to hypoxia, transform-
ing growth factor beta (TGFp) signaling, epithelial-to-mesenchymal
transitionand angiogenesis were enriched in COL11A1" CAFs (Extended
DataFig.4b). Moreover, COL11A1" CAFs also expressed LRRCIS5, closely
resembling LRRC15* CAFsreported to be induced by TGF signalingin
recent studies” (Extended Data Fig. 2d). NicheNet* analysis identified
TGFpB1as a predicted driver ligand for COL11A1" CAFs (Extended Data
Fig. 4c). TGFf has also been reported to promote tumorigenesis by
shifting CAFs toward glycolysis”, echoing the finding that COL11A1"
CAFs had higher glycolysis signature gene expression than ADH1B*
CAFs (Extended DataFig.4b). Moreover, COL11A1" CAFs differed from
ADHIB' CAFs in the extracellular matrix program, as COL11A1" CAFs
specifically expressed genes encoding fibrillar collagens, including
COL10A1, COL11AI and COLI12AI (Extended Data Fig. 2d). We also
noticed that the expression of COL11AI was significantly higher in
non-responders before treatment (Extended Data Fig. 4d). Of the
aforementioned collagen-encoding genes, COL11AI was associated
with a worse prognosis in the TCGA-LUAD cohort® (Extended Data
Fig. 4e). Overall, these findings suggest that ADH1B* CAFs exhibit an
iCAF phenotype with specific metabolic programs, whereas COL11A1"
CAFs exhibit a pro-tumor myCAF phenotype.

Accumulation of COL11A1" CAFs at tumor boundaries

We compared the cell proportions at the tumor boundary before
treatment between responders and non-responders. Non-responders
exhibited alower proportion of CD8 T cells and a higher proportion
of COL11A1" CAFs than responders (Fig. 4a). Therefore, we hypoth-
esized that COL11A1" CAFs at tumor boundaries potentially block
the infiltration of T cells. We further explored the spatial distribu-
tion of COL11A1* CAFs and ADH1B* CAFs in tumor specimens. Inter-
estingly, COL11A1" CAFs aggregated at the boundaries of isolated
tumors but dramatically decreased in the stromal regions far away
from malignant cells in non-responders (Fig. 4b and Extended Data
Fig.4f-h).In tumor core regions and invasive margins, tumors were
enveloped by COL11A1* CAFs (Fig. 4c,d). Meanwhile, these COL11A1*
CAFswere nearly absent from tumor stromal regionsin both respond-
ersand non-responders (Extended Data Fig. 4i). In contrast, ADH1B*
CAFswereenriched in tumor stromal regions but absent atisolated
tumor boundaries (Fig. 4b-d and Extended Data Fig. 4g,h). Con-
sistently, there were hardly any ADH1B* CAFs in tumor core regions
(Fig.4c).Yet, ADHIB* CAFs were predominant in tumor stromal slides
(Extended DataFig. 4i).

Fig. 3 | Spatial cellular organization of NSCLC following ICB-chemotherapy.

a, Left, schematic of tissue sampling. Right, H&E staining, the distribution of
gene counts and the abundance of CAFs, lymphocytes and malignant cellsin
spatial transcriptomics slides of four histologically defined categories: the tumor
core (n=3),invasive margin (n=1), isolated tumor (n =2) and tumor stromal
regions (n=11). Scale bars,1 mm.b, Schematic of how the 15 cell type contexts
were defined. ¢, UMAP of 15 types of spatial transcriptomics spot based on cell

type context. d, Highlighting of malignant cells, memory B cells, monocytes/
macrophages, CD8"T cells, COL11A1" CAFs and ADH1B* CAFs based on the UMAP
of cell type contexts. e, Spatial mapping of cell type contexts demonstrating

the spatial distributions of three types of malignant cell context, the COL11A1*
CAF-enriched context and the memory B cell-enriched context. Scale bars, 1 mm.
Panelsaandb created with BioRender.com.
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Fig. 4| Spatial location and potential pro-carcinogenic function of COL11A1"
CAFs. a, Boxplots showing the fractions of T cells and COL11A1" CAFsin
boundary ROIs from responders (n =11) and non-responders (n =15) pre-
treatment. b, Spatial distributions of tumor spots, COL11A1" CAFs and ADH1B*
CAFs, expression levels of DDR1, COL11A1and ADH1B, colocalization levels of
DDRI1-COL11A1and collagen formation signature scores in anisolated tumor
sample from P11 (NMPR). The green dots and areas with green dashed borders
represent tumor spots and tumor regions, respectively. ¢, Spatial distributions
of tumor spots, COL11A1* CAFs and ADH1B* CAFs in a tumor core sample from
PO8 (NMPR). Note that ADH1B* CAFs were devoid of tumor-rich regions.

d, Spatial distributions of tumor spots, COL11A1* CAFs and ADH1B* CAFsinan
invasive margin sample from PO3 (NMPR). Scale barsinb-d, 1 mm. e, Cell-cell
communication network between malignant cells and COL11A1* CAFs in P11.

f, Multipleximmunofluorescence staining showing the spatial locations of
COL11AT" fibroblasts (COL11A1" and a-SMA*) and DDR1" malignant cells in post-
ICB-chemotherapy specimens. Scale bars, 100 pm. g, Scatter plot showing the
results of a Pearson’s correlation test for the proportions of COL11A1" CAFs and
T cells near tumor cells in the Visium spatial transcriptomics cohort following
ICB-chemotherapy. h, Scatter plot of the correlation between the proportion

of CD8" T cells (calculated using the Estimating the Proportion of Inmune

and Cancer cells (EPIC) algorithm) and the proportion of COL11A1* CAFsin

the TCGA-LUAD cohort (treatment naive). The red line represents the linear
model and was fit using regression diagnostics. i, Forest plot of univariable

Cox regression analysis for the NSCLC cohort studies. The red dots represent
hazard ratios (HRs) of univariate Cox analysis. The black lines represent the

95% confidence interval (CI) for each hazard ratio. The P values were calculated
using the Cox proportional model. j, Boxplot showing the fractions of COL11A1"
CAFs of responders (R; n =14) and non-responders (NR; n = 22), estimated

using CIBERSORTY, in the Stand Up To Cancer-Mark Foundation for Cancer
Research subgroup cohort before ICB therapy. k, Boxplot showing the fractions
of COL11A1" CAFs of responders (n = 9) and non-responders (n =15), estimated
using CIBERSORTY, in anindependent NSCLC cohort before ICB-chemotherapy.
1, Boxplot showing the fractions of COL11A1* CAFs among all fibroblasts in
responders (n =10) and non-responders (n = 39), estimated using CIBERSORTX,
inamelanoma cohort (GSE78220) before ICB treatment. For the boxplotsinaand
j-1,thebox limits denote the first and third quartiles, with the median shownin
the center and the whiskers covering data within 1.5x the interquartile range from
the box.*P<0.05;**P<0.01.

The spatial relationship between COL11A1" CAFs and cancer cells
indicated their potential cell-cell interactions. Therefore, we per-
formed cell-cellinteraction analysis to identify potential interactions.
The receptor-ligand interactions between discoidin domain recep-
tor 1(DDRI1) and collagens (COL1A1, COL3A1, COL5A2 and COL11A1)
were observed between tumor cells and COL11A1* CAFs (Fig. 4e).
Giventhat COL11Al1 expressionisspecificto COL11A1" CAFs (Extended
Data Fig. 2d), we mainly focused on DDR1-COL11A1 colocalization
for further analysis. The extracellular domain of DDR1in tumors has
been reported to facilitate collagen fiber alignment and to obstruct
immune cell infiltration®’. Furthermore, the colocalization levels
of DDR1-COL11Al, as well as collagen formation signatures, were
highly enriched at tumor boundaries, yet declined in regions far away
from cancer (Fig. 4b and Extended Data Fig. 4j). Immunofluorescence
labeling also confirmed that COL11A1" CAFs were located surrounding
DDRI1"malignant cellsin NSCLC following ICB-chemotherapy (Fig. 4f
and Supplementary Note 4).

To explore whether COL11A1* CAFs impede immune cell infil-
tration, we examined the association between COL11A1" CAFs and
T cells. The abundance of COL11A1" CAFs around the spot containing
malignant cells was observed to be significantly negatively correlated
with theabundance of T cells in all samples containing malignant cells
(Fig.4g). Meanwhile, we found that T cell infiltration was also anticor-
related with the abundance of COL11A1* CAFs in the treatment-naive
cohort (Fig. 4h).

We further assessed whether the abundance of COL11A1" CAFs
couldbeareliable prognostic factor for NSCLC prognosis. The hazard

ratios for cohorts receiving ICB therapy were higher compared with
those of treatment-naive and chemotherapy cohorts*** (Fig. 4i), indi-
cating that COL11A1" CAFs might have played a more important role
in the ICB therapy cohort. To further verify whether the abundance
of COL11A1" CAFs could predict the responsiveness to ICB therapy,
we examined another two independent cohorts. The proportions of
COL11A1* CAFs were again significantly higher in non-respondersthan
responders before ICB treatment (Fig. 4j,k). Interestingly, evenina
melanoma cohort®’, we observed similar trends (Fig. 41). Altogether,
the above analyses collectively indicated that COL11A1" CAFs might be
an effective biomarker for predicting prognosis and responsiveness
to ICB therapy.

Secreted phosphoprotein 1-positive macrophages colocalize
with COL11A1" CAFs, blocking T cells

Previous studies have shown that CAF-macrophage interactions
promote tumor growth in colon and liver cancers®?*. We therefore
explored the relationship between macrophages and COL11A1" CAFs
inNSCLC. We observed a positive correlation between the abundance
of COL11A1* CAFs and secreted phosphoprotein1-positive (SPP1*) mac-
rophages in scRNA-seq data (Fig. 5a). Consistent with the results for
COL11AI" CAFs (Fig.1g), the fractions of SPP1* macrophages were also
significantly higher in non-responders both pre- and post-treatment
(Fig. 5b and Extended Data Fig. 5a,b). Like COL11A1" CAFs, SPP1" mac-
rophages also accumulated at tumor boundaries, showing a lower
abundance and a dispersed distribution in stromal regions further
away fromthe cancer (Fig. 5c-e and Extended Data Fig. 5c-e). Through

Fig. 5| SPP1' macrophages colocalize with COL11A1" CAFs, blocking T

cells. a, Scatter plot showing a significant positive correlation between the
fraction of COL11A1" CAFs and the fraction of SPP1* macrophages in single-cell
samples. The black line represents the linear model and was fit using regression
diagnostics after removing a hat value. b, Boxplot showing the fractions of
SPP1"macrophages in matched samples from three responders and four
non-responders before and after treatment. A one-sided ¢-test was used to
determine statistical significance. ¢, Spatial distributions of tumor spots, SPP1*
macrophages and CXCL9" macrophages, COL11A1" CAF-specific expression of
CD44, expression of SPP1and CXCL9 and colocalization levels between SPP1
and CD44 and between CXCL9 and CXCR3 in the slide of isolated tumor from P11
(NMPR). Cytotoxic signature scores for the same slide are included. d, Spatial
distributions of tumor spots, SPP1* macrophages and CXCL9* macrophages
and expression of CXCL9 in the slide of tumor core from PO8 (NMPR). e, Spatial
distributions of tumor spots, SPP1* macrophages and CXCL9" macrophages
and expression of CXCL9 in the slide of invasive margin from PO3. Scale bars in
c-e,1mm.f, Cell-cellinteractions between SPP1* macrophages and COL11A1"

CAFsin P08, inferred by CellChat, highlighting the SPP1-CD44 ligand-receptor
pair (red text). Two-sided P values were determined by Student’s ¢-test.

g-i, Boxplots comparing the fractions of COL11A1" CAFs (g), fractions of T cells
(h) and colocalization levels of SPP1-CD44 (i) at tumor boundaries (<3 spots)
from a COL11A1* CAF-low region (P03 ROI; n=166) and two COL11A1* CAF-
enveloped regions (P08 (n =970) and P11 (n = 150)). A two-sided Wilcoxon test
was used to determine statistical significance. j, Kaplan-Meier survival curve for
the TCGA-LUAD cohort, dichotomized by COL11A1* CAF and SPP1* macrophage
signature scores. The survival curves were compared by log-rank test.

k, Multiplex immunofluorescence staining from another NSCLC sample (P8T)
receiving ICB-chemotherapy, showing the spatial locations of COL11A1" CAFs
(a-SMA" and fibroblast activation protein positive (FAP*)), SPP1* macrophages
(SPP1*and PanCK"), T cells (CD3") and tumor cells (PanCK"). Scale bars, 100 pm.
For the boxplotsinband g-i, the box limits denote the first and third quartiles,
with the median shown in the center and the whiskers covering data within

1.5x the interquartile range from the box.
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cell-cellinteractions between SPP1" macrophages and COL11A1" CAFs,
we noticed enrichment of the SPP1-CD44 pair (Fig. 5f). SPP1secreted
by macrophages promotes the proliferation and activation of CAFs
and increases the deposition of collagen®. Interestingly, the COL11A1"
CAF-low region, with a higher level of T cell infiltration, also had sig-
nificantly lower colocalization levels of SPP1-CD44 compared with
COL11A1" CAF-highregions (Fig. 5g-i). This suggested that SPP1" mac-
rophages might cooperate with COL11A1* CAFs to protect tumors from
T cellinfiltration. Patients exhibiting high levels of both COL11A1" CAFs
and SPP1" macrophages consistently displayed the worst survival in
the TCGA-LUAD cohort (Fig. 5j).

In addition, multiplex immunohistochemistry staining showed
that SPP1" macrophages (marked by SPP1) tended to localize at the
tumor boundary with COL11A1" CAFs (marked by alphasmooth muscle
actin (a-SMA) and fibroblast activation protein; Extended Data Fig. 2d),
whereas T cells (marked by CD3) were blocked by the combination of
these two cell types (Fig. 5k and Supplementary Note 4). Moreover,
CXCL9" macrophages and cytotoxicimmune cells failed to enter tumor
bedsin the presence of COL11A1* CAFs (Supplementary Note 1).

Together, these results indicate that the formation of the tumor
boundary structure associated with SPP1* macrophages and COL11A1"
CAFs might contribute to theimmunosuppressive microenvironment
of NSCLC.

Comprehensive assessment of TLS maturation and recession

TLSs were prevalent in the TME of NSCLC after ICB-chemotherapy
(see Supplementary Note 2). Several studies have reported that TLSs
in the TME follow sequential maturation stages®**’. The genesis of
TLSs is believed to start from the local production of cytokines such
as interleukin-7, which recruit lymphoid tissue inducer (LTi) cells to
the site of inflammation. Then, LTi cells interact with stromal cells
throughthe lymphotoxin o,3,-LTf receptor signaling pathway to initi-
ate the formation of TLSs™. Interestingly, although TLSs were present
inmostsamples, spatial distributions of LTR-LT[ receptor signal were
only detected in a few slides (Extended Data Fig. 8a). We therefore
speculated that the apparent heterogeneity of TLSs across samples
might reflect different maturation stages of TLSs. To comprehensively
characterize the maturation process of TLSs, we gathered TLSs from
all samples and projected them onto the same low-dimension space
(Fig. 6a). Genes encoding TLS-initiating markers (RORCand IL7R) were
indeed enriched in similar distributions, whereas those encoding func-
tional cytokines (LTB and CXCL13) were enriched in different subsets
of TLSs (Fig. 6b). K-means clustering was utilized to distinguish the
different maturation stages of TLSs (Fig. 6¢), which included early
lymphoid aggregates (featured by high expression of LTi markers and
low cytokine expression), activated TLSs (high cytokine expression),

declining TLSs (decreased cytokine expression) and late TLSs (very
low cytokine expression) (Fig. 6¢).

We furtherinvestigated theimmune cell subtype compositions of
TLSs at different stages (Fig. 6d, Extended Data Fig. 8b and Supplemen-
tary Note 3). Theseresults collectively suggested that germinal center
B cells, effector memory CD4 T cells and follicular helper T cells are
important for the activation and function of TLSs, whereas memory B
cells are more related to the long-term effects of TLSs.

To explorethe relationship between TLS maturation and respon-
siveness to ICB-chemotherapy, we visualized the distribution of TLSs
in different states in each specimen. The maturation stages showed
remarkable diversity among patients, and even within the same slide
(Fig. 6e,f).Innon-responders, the trend that more TLSs were detected
with a decrease in the residual tumor load after immunotherapy
implied potential anti-tumor roles of TLSs (Fig. 6e). In the non-pCR
group, patients withactivated TLSs had lower residual tumor fractions
(Fig. 6g), indicating that activated TLSs are associated with better prog-
nosis'™. Surprisingly, in contrast with non-responders, patients witha
pCR had fewer TLSs, with almost all of them in the late stage (Fig. 6e).
These findings potentially suggest a state of recessed immune response
inthe TMEs of responders. Moreover, the different maturation states
of TLSs displayed distinct position biases. In particular, the major-
ity of intratumoral TLSs belonged to the early lymphoid aggregate
state, whereas recessionary TLSs were closer to residual tumor cells
compared with activated TLSs (Fig. 6f), implying the possibility of an
immunosuppressive environment in the vicinity of tumor cells.

TLS maturation correlates with clinical outcome in NSCLC

The analyses above suggest that the maturation statuses of TLSs are
highly heterogeneous among patients with different responses. We fur-
ther examined differences between responders’ and non-responders’
TLSsinthe same state. Given that almost all TLSs observed in patients
with a pCR were at the late stage, we performed a differential expres-
sion analysis of late TLSs in patients with a pCR versus an NMPR.
Compared with those in responders, the late TLSs in non-responders
expressed higher levels of HIFIA and ENOI, which have been reported
to beinvolved in the response to hypoxia and process of glycolysis,
respectively (Fig. 6h and Supplementary Table 3). In addition, genes
encoding heat shock proteins, such as HSP90B1 and HSP90OAA1, were
highly expressed in the late TLSs of non-responders (Fig. 6h). Consider-
ing heat shock proteins are usually upregulated under different stress
conditions, including hypoxia®®, we conjectured that the late TLSs of
non-responders were under a hypoxic environment. Further functional
analyses revealed the enrichment of pathways related to glycolysis and
hypoxia response in late TLSs of non-responders as well (Fig. 6i and
Extended Data Fig. 8c). Interestingly, no highly expressed genes were

Fig. 6| Characteristics of TLSs at different stages, and clinical significance

of TLSs. a, PCA visualization of all TLSs from all samples. b, PCA visualization

of the expression of TLS-related marker genes. ¢, PCA visualization of k-means
clustering and annotation of all TLSs. d, Heatmaps showing the enrichment of B
(left) and T cell (right) subtypes in different TLS states. e, Distribution of TLSs in
different states in all samples. f, Spatial distributions of TLSs at different stages
intumor samples from three non-responders. Scale bars,1 mm. g, Boxplot
showing the difference in residual tumor fractions between patients with and
withoutactivated TLSsin the non-pCR group. h, Volcano plot showing the
differentially expressed genes in late TLSs from the NMPR group versus those
from the pCR group. Two-sided Wilcoxon rank sum test was used to determine
the statistical significance. i, Bar plot showing the enriched Gene Ontology-
biological process (GO-BP) pathways of significantly elevated genes in TLSs from
NMPR as compared to those from pCR. The color represents the significance.
AFisher’s exact test was used to determine two-sided P values, denoting the
enrichment P values of the pathway IDs. j, Boxplot showing the distributions

of hypoxia signature scores of TLSs in different states: lymphoid aggregates
(n=42),activated TLSs (n =71), declining TLSs (n =103), late TLSs (pCR) (n =26)

andlate TLSs (NMPR) (n =39). A two-sided Wilcoxon rank-sum test was used to
determine statistical significance. k, Correlation between activated TLS score
and hypoxia signature score in another pre-treatment NSCLC cohort, measured
by bulk RNA-seq. The blue line represents the regression line. The gray band is
the 95% confidence interval for the regression line. Each scattered dot represents
asample from the cohort. The TLS and hypoxia scores were defined as the
average expression of corresponding signature genes from Supplementary
Table 4. The two-sided P value was determined by Pearson’s correlation test.

1, Boxplot showing activated TLS signature scores before ICB-chemotherapy
innon-responders (preNR; n =15) and responders (preR; n=9) from another
independent NSCLC cohort, measured by bulk RNA-seq. A one-sided Wilcoxon
rank-sum test was used to determine statistical significance. m, Kaplan-Meier
survival curve for the TCGA-LUAD cohort, dichotomized by activated TLS
signature. Statistical significance was determined by log-rank test. For the
boxplotsing,jandl, the box limits denote the first and third quartiles, with

the median shownin the center and the whiskers covering data within1.5x the
interquartile range from the box. mRNA, messenger RNA.
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identified in the late TLSs of patients with a pCR (Fig. 6h), suggesting
arecessionary and quiescent state of these TLSs. Collectively, these
results indicate that late TLSs of non-responders located in a hypoxic
TME might be unfavorable for maintaining functional TLSs.
Interestingly, increased hypoxia signature scores were also
associated with early-stage TLSs of non-responders following ICB-
chemotherapy (Fig. 6j and Extended Data Fig. 8d). Previous studies
have reported that hypoxia could cause enhancement of regulatory
T cells in the TME**°, consistent with the enrichment of regulatory
T cells in the lymphoid aggregate state (Fig. 6d and Extended Data
Fig.8b). Another study discovered that hypoxia could enhance immu-
nosuppression by inhibiting CD4 effector T cells*. Indeed, we observed
that the hypoxia signature score in TLSs was positively correlated
with the fraction of regulatory T cells and negatively correlated with

effector memory CD4 T cells (Extended Data Fig. 8e). We therefore
speculated that hypoxia might create an immunosuppressive TME,
thus suppressing TLS activation. To examine this, we calculated the
correlation between the hypoxia score and TLS activation score in
another NSCLC cohort. The overall negative correlationbetween these
two scores implied that the hypoxic TME might have an inhibitory
impact on TLS formation (Fig. 6k). Altogether, these results suggest
that a hypoxic TME could promote regulatory T cell infiltration and
inhibit CD4 effector memory T cells to suppress the formation and
maintenance of TLSs.

Furthermore, we also investigated the potential of TLS matura-
tion status as a predictor of patient survival and response to ICB-
chemotherapy. Most of the TLSs in the patients with an MPR were
identified as activated TLSs using the spatial transcriptomics data,
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whereas in the non-pCR group, patients with activated TLSs had
lower percentages of residual tumor (Fig. 6e,g). Another independ-
ent NSCLC cohort also showed that the activated TLS signature was
significantly higher in responders than non-responders at baseline
(Fig. 61). Additionally, a higher activated TLS signature was associated
with better overall survivalin TCGA-LUAD cohort patients (Fig. 6m).In
brief, our analyses suggest that activated TLSs are beneficial for patient
survival and might serve as a potential biomarker or therapeutic target
for future immunotherapy.

Discussion

In this study, we delved into the transcriptional characteristics
associated with resistance to ICB combined with chemotherapy in
NSCLC by utilizing spatial transcriptomics and single-cell sequencing
technology (Fig. 7).

Evidence hasbeen accumulating on how cancer cell state plastic-
ity impacts cancer evolution and clinical outcomes****, In cervical
squamous cell carcinoma, specific cancer cell states shape the TME and
clinical outcomes**. In this study, we identified 14 distinct cancer cell
statesin NSCLC samples. Tumor cell states associated with NRF2 targets
and IFNyin treatment-naive samples were linked to poor and favorable
responses to ICB-chemotherapy, respectively. NRF2 activation has
been reported to promote lung cancer tumorigenesis*, accounts
for multidrug resistance and is associated with poor prognosis*®*’.
Activation of the NRF2 pathway is associated with less CD3*CD8" T cell
infiltration into tumor beds*®. Consistently, the NRF2 target cell state
score was negatively correlated withimmune infiltration in our data.
This finding underscores the significance of NRF2 pathway activa-
tion as a potential resistance factor that may disrupt tumor-immune
interactionsinresponse to ICB-chemotherapyin NSCLC. In contrast,
the proinflammatory IFNy pathway could be involved in promoting
cytotoxic immune cell infiltration and cancer elimination, leading to
good prognosis.

The TME contains heterogeneous populations of fibroblasts with
bothtumor-promoting and suppressive roles*~2. The targeting of CAFs
has been considered an effective way of enhancing ICB therapeutic
efficacy in pre-clinical models® . In our study, we identified that

COL11A1" CAFs were significantly more abundant in non-responders
than responders. Interestingly, we observed that COL11A1" CAFs
were predominantly localized at tumor boundary regions after ICB-
chemotherapy, which could potentially block the contact between
tumor cells and cytotoxic immune cells. We observed that collagen
produced by COL11A1" CAFs mightinteract with the tumor cell-surface
receptor DDR1 at tumor boundaries. DDR1 has been reported to pro-
mote collagen fiber alignment to enhance tumorimmune exclusion®.
These results highlight common mechanisms for immune exclusion
achieved by CAFs and suggest that COL11A1" CAFs are a potential
pan-cancer therapeutic target. Additionally, SPP1' macrophages were
presentin the fibroblast compartment, which may promote collagen
secretion by COL11A1" CAFs through SPP1-CD44 interaction. Thus,
blocking thisinteraction may represent an effective regimen by which
to overcome immunotherapy resistance caused by CAF. However,
CD44iswidely expressed in multiple cell lineages and navigating CD44
inhibitors to antagonize CD44 in CAFsis challenging. In contrast, SPP1
isselectively expressed intumor-associated macrophages and tumor
cells*® and hasbeen reported to regulate colony stimulating factor1to
recruit myeloid-derived suppressive cells into the TME”. Therefore,
inhibition of SPP1may confer atwo birds, one stone benefit. A previous
study reported that WDRS inhibitors could reduce the expression of
SPP1 by suppressing H3K4me3 in tumor cells and tumor-associated
macrophages®. Although these WDR5 inhibitors have not been tested
inaclinical setting, our study suggests that assessing their safety and
efficacy in future clinical studies to treat NSCLC is plausible.

The colocalization of CD4 T and B cells indicated the prevalent
presence of TLSs and this was validated by pathological examination.
TLSs have been found in various cancer types and have been linked
to favorable outcomes following ICB treatment in melanoma, sar-
coma and renal cell carcinoma™***’, Using tissue morphologies from
H&E images and transcriptome features from spatial transcriptomics,
we systematically evaluated the potential TLS maturation process in
NSCLC TMEs. Our analyses identified four different stages of TLSs,
which were in general comparable to the previous classification as
early TLSs (lymphoid aggregates), primary follicular-like TLSs (with
follicular dendritic cells but lacking germinal centers) and secondary
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follicular-like TLSs (containing both follicular dendritic cells and ger-
minal centers)**”. Inaddition, we defined alate-stage TLS as featuring
low cytokine expression. Intriguingly, late TLSs exhibited differential
states in responders and non-responders. Responders showed a qui-
escent state of late TLSs, possibly due to a lack of persistent tumor
antigenic stimulation. In contrast, in non-responders, late TLSs and
early lymphoid aggregates were in an immunosuppressive hypoxic
state thismay have suppressed both TLS formation and maintenance.
It remains possible thatin non-responders some lymphoid aggregate
TLSs cannever become mature and remaininanimmature state due to
suppression from the hypoxic environment®. The underlying regula-
tory mechanisms of hypoxia in TLS activation and suppression need
to be further clarified by combining in vitro and in vivo perturbation
experiments together with higher-resolution spatiotemporal analyses.
Notably, our findings suggest that the evaluation of TLS status may
have prognostic value for patients with NSCLC undergoing immuno-
therapy and could inform treatment decisions and patient manage-
ment strategies.

Insummary, our study provides a high-resolution spatial cellular
and molecular atlas of the TME in NSCLC before and after neoadjuvant
ICB-chemotherapy. Using single-cell and spatial transcriptomic analy-
ses, we identified distinct tumor cell features and microenvironment
compartments that displayed remarkable heterogeneity and dynamic
changes in response to treatment. These results highlight the poten-
tial of therapies that target multiple components of the TME, includ-
ing fibroblasts, macrophages and TLSs, and suggest new avenues for
developing combinatorial therapies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Patient cohorts and sample collection

We conducted a prospective study in patients with resectable
NSCLC lacking EGFR/ALK mutations who received neoadjuvant ICB-
chemotherapy (PD-1inhibitors plus platinum-based chemotherapy).
Before tissue acquisition and genomic sequencing for each patient, we
obtained institutional review board approval from the Shanghai Pul-
monary Hospital (K21-294) and all patients provided written informed
consent. Primary tumor tissues were obtained via percutaneous pul-
monary biopsy, bronchoscopy biopsy or endobronchial ultrasound
biopsy before drug administration. Patients were treated with two to
four cycles of neoadjuvant ICB-chemotherapy followed by surgery.
More information is provided in Supplementary Table 1. Fresh tumor
tissues were collected immediately following surgical resection.

Spatial transcriptomics data collection pre-treatment

DSP profiling (supported by YuceBio Technology) was performed on
primary tumor tissues according to previously published methods®'.
Briefly, formalin-fixed, paraffin-embedded sections were hybridized
using ultraviolet-photocleavable barcode-conjugated RNA in situ
hybridization probes to capture and profile messenger RNA. Tumors
and adjacent normal tissues were stained for PanCK, a-SMA and CD20
markers. Slides were thenloaded onto the GeoMx instrument for region
of interest (ROI) selection based onimmunofluorescence images and
the results were confirmed by pathologists. Auto-segmentation was
performed using custom ultraviolet illumination masks to create ROIs
that resulted in photocleavable tags being released specifically in
tumors (PanCK" staining and tumor-enriched segments), boundaries
(PanCK™ and a-SMA" staining and an adjacent tumor region), stromal
regions (a-SMA staining and normal tissue) and lymphoid aggregates
(CD20" staining). Cleaved barcodes were collected from each ROl and
quantified via sequencing.

The GeoMx NGS Pipeline (version 2.2.0.2) was utilized to convert
sequenced FASTQfilesinto DCCfiles. The datawere subjected to qual-
ity control, including technical signal, technical background, probe
and normalization. Technical signal quality control was executed to
eliminate ROls in cases where the alignment rate of the reads against
the template sequence was <80%. The technical background included
threeindicators: ano template control (NTC) count; anegative probe
count; and ROI parameters. The NTC count was employed to identify
and detect template contamination. Any ROIs with an NTC number
exceeding 1,000 were eradicated. The overall technical signal level
was determined using the negative probe count, with the threshold
being set to four counts. Furthermore, the parameters of the ROl were
measured by the number of nuclei as well as the surface area. To meet
the quality control standards, an ROI had to have a nucleus count of
>100. The sizes of ROIs were standardized using cell numbers and
areanormalization toavoid inconsistences across them. High-quality
datawere then normalized with Quantile 3 (ref. 62) and used for down-
stream analysis. Immune and stromal cell abundancesin the TME were
determined with deconvolution analysis conducted using scTAPE
(version1.0)®.

Spatial transcriptomics data collection post-treatment

The 10x Genomics Visium spatial transcriptomics platform was used
to analyze the transcriptome of cellular components within the tissue
context fromtheimmunotherapy-treated NSCLC tumors. Two to three
pieces of tumor were embedded in optimal cutting temperature com-
pound by placing them cut side downinto a plastic mold. The optimal
cutting temperature compound-filled mold was then snap frozen in
chilled isopentane and stored at —80 °C until use. Cryosections were
then cutat10 pmthickness and prepared for subsequent experiments,
including H&E staining, permeabilization and library construction.
Tissue optimizationand library preparation were performed according
to the manufacturer’s instructions with 10 min of permeabilization.

The barcoded libraries were sequenced using an Illumina NovaSeq
6000 platform with the PE150 sequencing mode. Raw sequencing
data of spatial transcriptomics were subjected to quality control and
mapped to the reference genome using Space Ranger (version1.1).

scRNA-seq data generation and quality control

Details on tissue dissociation, the preparation of single-cell suspen-
sion and scRNA-seq can be found in Supplementary Note 4. For the
BD Rhapsody platform, raw FASTQ files were processed using the
BD Rhapsody Whole Transcriptome Analysis pipeline (https:/www.
bdbiosciences.com/content/dam/bdb/marketing-documents/BD_
Single_Cell_Genomics_Bioinformatics_Handbook.pdf) to obtain a
unique molecular identifier (UMI) matrix for each sample. For the
Singleron platform, raw reads were processed to generate gene
expression matrices with the CeleScope pipeline (https://github.com/
singleron-RD/CeleScope). The matrix of read counts per sample was
further analyzed with the Seurat® package (version 4.0.4) in the R
software (version 4.1.1). For each cell, we used four quality control
measures. Cells falling into any of the following four categories were
excluded: (1) <400 expressed genes; (2) >25% UMIs of mitochondrial
genes; (3) >25% UMIs of ribosomal genes; and (4) ahousekeeping score
(defined as the sum of the UMIs of three canonical housekeeping genes:
ACTB, GAPDH and MALATI) of <1. To exclude data from droplets con-
taining more than one cell, doublet detection and removal were per-
formed using Scrublet®. Anexpected doublet rate parameter of 0.025
was used and doublet score thresholds were chosen manually to divide
putative singlet and neotypic doublet modesin the score distribution.
Predicted doublets were thenremoved fromgene-by-barcode matrices.

scRNA-seq data processing, cross-platformintegration

and clustering

The gene expression matrices were normalized using the Normal-
izeData function with default parameters. The normalized data were
thenscaled using the ScaleData function, with the unwanted variation
regressed out fromtotal counts by setting vars.to.regress=c(“nCount_
RNA”). The top 3,000 highly variable genes were detected using the
FindVariableFeatures function. Principal component analysis (PCA)
was performed based on the 3,000 most variable features using the
RunPCA function. We observed a strong batch effect between the
BD Rhapsody and Singleron platforms from the PCA plot. To adjust
technical sources of variation between platforms, we used Harmony®®
(version 0.1.0). The first 20 principal components and a resolution of
0.6 were used with the FindNeighbors and FindClusters functions.
Dimension reduction was performed using the RunUMAP function.
Major cell lineages were assigned to each cluster of cells using the
abundance of canonical marker genes: epithelial cells (EPCAM), CD31"
stromal cells (/TGBI (CD29)* and PECAMI (CD31)"), endothelial cells
(PECAMI), T cells (CD3D and CD3E), B cells (CD79A and MS4A1), plasma
cells (CD79A and MZB1), monocytes/macrophages (CD14 and CD68),
dendritic cells (HLA-DRA and CDIC), neutrophils (FCGR3B) and mast
cells (MS4A2 and KIT).

Cell subpopulation identification

Cycling immune cells were picked out for reclustering to separate
Tcells, Bcells, plasma cells and monocytes/macrophages. Each of the
major lineages was then extracted to perform the second clustering,
as described above, to identify subpopulations. We further clustered
epithelial cells, fibroblasts, T cells, B cellsand monocytes/macrophages
individually. We used a resolution of 0.4 for epithelial cells, 0.3 for
CD31 stromal cells, 0.6 for T cells, 0.3 for B cells and 0.4 for mono-
cytes/macrophages. Notably, after performing sublineage clustering,
we manually removed clusters expressing two or more major lineage
markers (such as LYZ for myeloid cells and CD3E for T cells) from the
uniform manifold approximation and projection (UMAP) plot, which
were possible doublets missed by Scrublet.
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CNV estimation and identification of malignant cells

Toidentify malignant cellsamongepithelial cells, we used the infercn-
vpy algorithm (version 0.2.0; https://github.com/icbi-lab/infercnvpy)
to estimate CNVs. The infercnvpy algorithm was run with stromal cells
(CD31" stromal cells and endothelial cells) as a normal reference and
with default parameters. The CNV scores for each cell were calculated
using the infercnvpy.tl.cnv_score function.

Cellular fraction calculation

For each sample, we calculated the cellular fraction for each major
immune lineage (T cells, B cells, myeloid cells and so on). For the sub-
populations of major cell lineages, cellular proportions were calculated
using the fractionsin corresponding major lineages. The samples that
had fewer than ten cells in a major lineage were removed for down-
stream statistical analysis. All of the statistical tests used are noted in
the figure captions.

Gene module enrichment analysis

To estimate the signatures of the CAF phenotypesiCAF and myCAF, we
calculated the enrichmentscores for fibroblasts using the AddModule-
Score functionin Seurat, with the gene list reported by Ohlund et al.**.
The enrichment of hallmark signatures and metabolic activity within
each fibroblast subset was quantified using the AUCell algorithm®’
(version 1.8.0) with Hallmark and Kyoto Encyclopedia of Genes and
Genomes pathways. To quantify the tumor cell state, we defined cell
states using a set of the 50 most differentially expressed genes for each
malignant subset. The scores of tumor cell state were calculated using
the R package GSVA (version1.52.3)%,

Ligand-receptor interaction analysis

CellChat (version1.1.3)* was utilized to infer ligand-receptor interac-
tions. The cell-cell communication network was visualized using the
netVisual_aggregate function. After annotating the object with relevant
labels and identifying overexpressed genes, the communication prob-
ability wasinferred using the computeCommunProb function. Cell-cell
communications for each cell signaling pathway were generated with
the computeCommunProbPathway function. Graphs were gener-
ated using the netVisual_chord_gene and netVisual_bubble functions.
Receptor-ligand pairs related to DDR1and summarized using Single-
CellSignalR™ (https://github.com/SCA-IRCM/SingleCellSignalR) were
manually added to the default reference.

NicheNet analysis

NicheNet* (version 1.0.0)—a powerful tool that predicts the ligands
driving transcriptomic changes of target cells—was used to identify
potential ligands that drive the specific phenotypes of fibroblast sub-
sets. As described previously”, we used all of the expressed genes
of COL11A1" CAFs as the background of genes and the top 50 genes
ordered by log,[fold change] as the gene set of interest. Genes were
considered to be expressed when they had non-zero values in at least
10% of the cells within a cell type. We only used the expressed recep-
tors in COL11A1" CAFs to construct ligand-receptor interactions and
calculate ligand activity using the predict_ligand_activities function.

Survival analysis using the TCGA-LUAD cohort

The fragments per kilobase of transcript per million mapped reads
matrix and clinical information on lung adenocarcinoma from the
TCGA database were downloaded from UCSC Xena (http://xena.ucsc.
edu/). The average expression levels of marker genes of a cell type were
calculated as the signature of that particular cell type. The patients
were divided into high- and low-signature groups using a cutoff value
estimated with the survminer (version 0.4.9) R package for COL11A1"
CAF signature (Supplementary Table 2). For the signature of SPP1*
macrophages, a median value was used to dichotomize patients. The
Kaplan-Meier curve was generated using the survival (version 3.2.11)

R package and compared using a log-rank test. A P value of <0.05 was
considered statistically significant.

Fibroblast subset deconvolution in bulk RNA-seq

Toassess whether the abundance of COL11A1" CAFsin NSCLC could be
a predictor of immunotherapy responses, we used the CIBERSORTx
algorithm” to estimate the fractions of CD31" stromal subsets from
bulk RNA-seqdata. We first used the UMImatrix of CD31" stromal cells
labeled by subset name to create the signature matrix on the CIBER-
SORTxwebsite (https://cibersortx.stanford.edu/) with the setting Min.
Expression = 0.4. Then, the raw count matrix of bulk RNA-seq data was
used as input to impute cell fractions with the generated signature
matrix and default parameters.

Spatial deconvolution using STRIDE

To understand the spatial cell type distribution in the TME, we per-
formed deconvolution onthe 10x Visium spatial transcriptomics data
using STRIDE* (version 0.0.1b) (https://github.com/wanglabtongji/
STRIDE) with scRNA-seq as a reference. Considering the heterogene-
ity of TMEs in NSCLC subtypes, STRIDE was implemented within lung
adenocarcinoma and lung squamous cell carcinomasamples, respec-
tively. We first performed cell type deconvolution at the major lineage
level; thetop ~100 differentially expressed genes of each cell type were
identified with the FindAlIMarkers function of Seurat and used as sig-
nature genes to run STRIDE. To decipher the spatial distribution of cell
subtypes, we also performed deconvolution at the minor lineage level.
Specifically, weidentified the top ~100 differentially expressed genes
of each subtype and utilized them to run STRIDE within each major
lineage cell type separately. STRIDE returns the relative abundances of
cell subtypes, meaning that the sum of all subtype proportions within
each cell typeis 1. Then, the absolute proportion of each cell subtype
was calculated asthe product of the minor lineage proportionand the
corresponding major lineage proportion.

Spatial transcriptomic data analysis

The generated gene-by-spot matrices were analyzed with the Seurat
package (version 4.0.4) in R. Before downstream analysis, we filtered
outspotswith fewerthan200 genes detected and removed genes with
fewer thantenread counts or expressed in fewer than three spots. Nor-
malization across spots was performed with the SCTransform function.

To explore the cytotoxic signature, we calculated the enrichment
scores for each spot using the AddModuleScore function with the
canonical cytotoxic markers (GZMA, GZMB, GZMK, GNLY, IFNG, PRF1
and NKG?).Spatial features were visualized with the SpatialFeaturePlot
function in Seurat. To estimate the signature of collagen formation
in spatial transcriptomics, we calculated enrichment scores using
the gene lists from the REACTOME_COLLAGEN_FORMATION path-
way (msigdb.v7.5.1.symbols.gmt; downloaded from https://www.
gsea-msigdb.org/gsea/index.jsp).

To explore the cell type contexts, we performed PCA and then
UMAP using the RunPCA and RunUMAP functions based on the cell type
proportioninferred by STRIDE. A total of 15 cell contexts were defined
by the FindNeighbors and FindClusters functions with the parameters
dims=1:10 and Resolution=0.8, respectively.

Visualization of cell abundance and gene expressionin
Visiumdata

As previously reported’, although multiple subpopulations from
the same cell lineage could theoretically be present in a given spa-
tially barcoded spot, for the sake of stringency (given the low number
of cells per spot), we assumed that the most abundant subpopula-
tion inferred per cell type had the dominant effect. Therefore, we
displayed the spatial distribution of COL11A1" CAFs in the COL11A1"
CAF-dominant spots and the distribution of ADH1B* CAFs in ADHIB*
CAF-dominant spots. For SPP1* and CXCL9" macrophages, their
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colocalization and communication with COL11A1" CAFs had important
biological effects, so we displayed the spatial distributions of SPP1*
and CXCL9" macrophages in SPP1* macrophage-dominant or CXCL9*
macrophage-dominant spots.

Since CD44 was widely expressed in immune, stromal and epi-
thelial cells, we normalized the expression of CD44 in spatial tran-
scriptomics by multiplying the fraction of COL11A1" CAFsin a spot to
represent the expression of CD44 in COL11A1" CAFs (Fig. 5¢). Besides
SPP1* macrophages, malignant cells also expressed SPPI. Therefore, we
manually adjusted the expression of SPPIin tumor spots to O to display
the expression of SPP1in non-tumor regions and perform SPP1-CD44
colocalization analysis between SPP1" macrophages and COL11A1* CAFs
inthe Visium data (Fig. 5¢).

Colocalization analysis in Visium data

We used anarithmetic product strategy to estimate the colocalization
level at the spot level in spatial transcriptomics. For each spot, the
colocalization level of a gene A-gene B pair was determined by the
expression both within the spot and with surrounding spots. To be
specific, foraspot (X), the arithmetic product of the expression level
of gene A (Xgene o) and gene B (Xgeqe 5) Was defined as the colocalization
level withinthe spot, and the weight was set as 1. For the colocalization
level fromits surrounding spots (V;), the weight was set to 0.5. Here we
only considered the colocalization level between aspot and the nearest
spots (n < 6). Then, the colocalization level of the gene A-gene B pair
inspot X was calculated as

n

Gene A — gene B colocalization level = X Xg + 0.52 YigeneaYigenen
i=1

TLS identification based on H&E image and Visium data

To study TLSs systematically, we developed an approach to identify all
TLSs in spatial transcriptomics slides (https://github.com/wanglab-
tongji/Scanner), which combined both H&E staining images and spatial
transcriptomics data (Extended Data Fig. 6f). TLSs primarily comprise
lymphocytes withlittle cytoplasm and are organized compactly, result-
ingin darker purplelociseparated from the surrounding brighter pink
stroma. H&E images were converted to grayscale, and darker loci were
extracted as potential TLSs. We checked the deconvolved cell type
composition of spots within the extracted region, and the darker loci
with a high percentage of lymphocytes (B and T cells) (>15%) were
considered as TLSs. Of note, only TLSs with more than two spots were
considered in downstream analysis. The scikit-image toolbox was
applied forimage processing.

Integrative analysis of TLSs

Eachidentified TLS covered multiple spots. The averaged gene expres-
sion of each spot was used to represent the gene expression profile
of each TLS. To enable comprehensive and unbiased analyses, we
integrated TLSs from all samples together. First, we performed PCA of
TLSsineachsample separately. TLSsin PO6 samples exhibited greater
diversity among all samples. Given this, we utilized TLSs fromPO6 asa
reference and projected TLSs from other samples onto the PO6 space.
Based on the top 100 genes with high positive or negative contributions
fromPCland PC2, the pseudotime of each TLS was calculated using the
Monocle 2 (ref. 74) orderCells function. To classify TLSs into different
stages, we performed k-means clustering on TLSs using the first two
principal components (that is, PC1 and PC2) with k set to 4. The four
clusters were then defined as lymphoid aggregates, activated TLSs,
declining TLSs and late TLSs by their expression of TLS-related genes,
including LTimarkers (RORCand IL7R)” and functional cytokines (LTB
and CXCL13)". The cluster with a high LTi signature represented the
earlyinitiation stage and the cluster with high expression of cytokines
represented the activated TLS state. The cluster with decreasing
cytokine expression and the one with low cytokine expression were

defined as declining and late TLSs, respectively. The process from the
early to the activated state was defined as activation and the process
after activation from the declining stage to the late state was defined
asrecession (Fig. 6¢).

Differential expression analysis in TLSs

To identify the differences between late TLSs for samples with differ-
entresponses, we compared the expression of allgenesinspots of late
TLSs fromthe NMRP versus pCR group. The significance of each gene
was defined by Wilcoxon rank-sum test and adjusted by Bonferroni
correction. Significantly highly expressed genes in the NMPR group
(adjusted Pvalue < 5 x 107 and average log[fold change] > 0.25) were
selected for pathway enrichment analysis. The hypoxia signature was
defined astheintersection between the significantly highly expressed
genes in the NMPR group and genes from the HALLMARK_HYPOXIA
gene set (Supplementary Table 3). The activated TLS signature was
defined as the highly expressed genesinactivated TLS spots compared
with lymphoid aggregate spots (Supplementary Table 4).

Statistics and reproducibility

In Figs. 4a,l and 6g, a two-sided Wilcoxon test was used to determine
statistical significance. In Fig.4k,j, a one-sided Wilcoxon test was used
todeterminestatistical significance. InFigs. 4f,h and 5a, two-sided P val-
ueswere calculated by Pearson’s correlation test. The other statistical
methods used are described inthe captions. Allimmunofluorescence
results were replicated independently at least three times to ensure
reproducibility. A P value of <0.05 was used as the threshold for sig-
nificance, except where indicated otherwise. No statistical method
was used to predetermine the sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw scRNA-seq and spatial transcriptomics data have been depos-
ited to the Genome Sequence Archive of the BIG Data Center at the
Beijing Institute of Genomics, Chinese Academy of Science, under
accession number HRA002509 (accessible at http://bigd.big.ac.cn/
gsa-human). Processed bulk RNA-seq, scRNA-seq and spatial transcrip-
tomics data are available from Zenodo (accessible at https://zenodo.
org/records/8227624). The bulk RNA-seq data of the independent
NSCLC cohort® were acquired from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo) with the accession GSE207422.
The bulk RNA-seq data of the Stand Up To Cancer-Mark Foundation
for Cancer Research cohort® are available from Zenodo (accessible
at https://zenodo.org/records/7849582)"”". The bulk RNA-seq data
of the OAK and POPLAR cohorts*® were acquired from the European
Genome-Phenome Archive (https://ega-archive.org) with the acces-
sion EGAS00001005013. The bulk RNA-seq data of the melanoma
cohort®? were acquired from the Gene Expression Omnibus with the
accession GSE78220.

Code availability

The codeforidentifying the TLSs in spatial transcriptomics slides can
be found at https://github.com/wanglabtongji/Scanner. Code for
inferring the cell type distribution in spatial transcriptomics data can
be found at https://github.com/wanglabtongji/STRIDE.
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Extended Data Fig. 1| Characterization ofimmunotherapy-treated NSCLC
by combined scRNA-seq and spatial transcriptomic analysis. a, Dot-heat plot
showing marker genes for each major lineage. The color gradient represents
the expression level, and the diameter represents the percentage of cells.

b, Examples of inferred CNV profiles of malignant cells and normal epithelial
cells, with endothelium and CD31" stromal cells as references. Left panel:

lung squamous cell carcinoma (LUSC). Right panel: lung adenocarcinoma
(LUAD). ¢, Dot-heat plot showing the markers of adeno, squamous and

neuroendocrine tumorsin PO8 and P17.d, UMAP plot of all epithelial cells
colored by subpopulations. e, Boxplot showing the CNV score of each epithelium
subpopulation. Box limits denote the first and third quartiles with the median
shownin the center and whiskers covering data within1.5x the interquartile
range from the box. f, Dot-heat plot showing the marker genes for each normal
epithelial cluster. The color gradient represents the scaled expression level,

and the diameter represents the percentage of cells. g, Bar plot showing the
percentage of major lineages for each sample. Related to Fig. 1.
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Extended Data Fig. 2| Characterization ofimmunotherapy-treated NSCLC

by combined scRNA-seq and spatial transcriptomic analysis. a, Dot-heat plot
showing the marker genes for each T cluster. The color gradient represents

the scaled expression level, and the diameter represents the percentage of

cells. b, Dot-heat plot showing the marker genes for each B cluster. The color
gradient represents the scaled expression level, and the diameter represents the
percentage of cells. ¢, Dot-heat plot showing the marker genes for each Mono/
Macro cluster. The color gradient represents the scaled expression level, and the

diameter represents the percentage of cells. d, Dot-heat plot showing the marker
genes for each CD31" stromal cluster. The color gradient represents the scaled
expression level, and the diameter represents the percentage of cells. e, Dot-heat
plot showing the marker genes for each DC cluster. The color gradient represents
the scaled expression level, and the diameter represents the percentage of cells.
f, Dot-heat plot showing the marker genes for each endothelial cluster. The color
gradient represents the scaled expression level, and the diameter represents the
percentage of cells. Related to Fig. 1.
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Extended Data Fig. 4 | Single-cell and spatial transcriptomic analyses of
fibroblast subsets after ICB-chemotherapy. a, Violin plots showing iCAF and
myCAF signature scores in COL11A1" CAFs (n = 2359) and ADH1B* CAFs (n = 956).
Box limits denote the first and third quartiles with the median shownin the
center and whiskers covering data within1.5x the interquartile range from the
box. b, Heatmap showing differentially enriched Hallmark and KEGG metabolic
pathways in CD31" stromal subsets. ¢, Heatmap showing potential ligands driving
the phenotype of COL11A1* CAF cells. d, Boxplots showing the average expression
of COL11A1in COL11A1" CAF cells from pre-treatment responders (PreR, n=3),
pre-treatment non-responders (PreNR, n = 4), post-treatment responders (PostR,
n=5) and post-treatment non-responders (PostNR, n =12). The center line
indicates the median, and the lower and upper hinges represent the 25th and 75th
percentiles, respectively. Whiskers denote 1.5x interquartile range. A two-sided
ttest was used to determine the statistical significance. e, Kaplan-Meier survival
curve of the TCGA-LUAD cohort dichotomized by the expression of COL11A1. The
survival curves were compared by log-rank test. f, Spatial distribution of tumor

spots, the fractions of COL11A1" CAFs and ADH1B" CAFs and the expression of
COL11A1and ADH1B in the slide of isolated tumor from P12. g,h, Scatter plots
showing asignificantly negative correlation between COL11A1* CAF abundance
and distance to tumors (spot) and a positive correlation between ADHIB* CAF
abundance and distance to tumors (spot) in the slides of isolated tumor from P11
(g) and P12 (h). The expression levels of COL11A1 or ADH1B in each spot are shown
by the color gradient. The curves were fitted using a locally weighted regression
(loess) model. The two-sided P values were determined by Pearson’s correlation
test. i, Spatial distribution of tumor spots, fractions of COL11A1" CAFs and
ADHI1B* CAFs and the expression of COL11A1and ADHIB in the slides of tumor
stromal regions from P02 and P09. j, Scatter plot showing a significant negative
correlation between the colocalization levels of COL11A1-DDR1and the collagen
formation signatures and distance to tumors (spot) in the slide from P11. The
curves were fitted using linear and locally weighted regression (loess) models,
respectively. The two-sided P values were determined by Pearson’s correlation
test. Related to Fig. 4.
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Extended Data Fig. 5| Spatial transcriptomic and scRNA-seq analyses of
macrophage subsets after ICB-chemotherapy. a, Boxplots showing the
fractions of Mono/Macro subsets in matched samples from 3 responders and

4 non-responders at baseline and post-treatment phase. b, Boxplots showing
the fractions of Mono/Macro subsets from pre-treatment responders (PreR,
n=3), pre-treatment non-responders (PreNR, n = 4), post-treatment responders
(PostR, n = 6) and post-treatment non-responders (PostNR, n=13). ¢, Scattered
plot showing a significant negative correlation between the fraction of SPP1*
macrophages or CXCL9" macrophages and distance to tumors (spot) inthe slide
of isolated tumor from P11. The expression level of SPP1or CXCL9 in each spot
isshown by the color gradient. d, Spatial distribution of tumor spots, fractions
of SPP1* macrophages and CXCL9* macrophages and the expression of SPP1

and CXCL9in the slide of isolated tumor from P12. e, Scattered plot showing a
significant negative correlation between the fractions of SPP1* macrophages or
CXCL9* macrophages and the distances to tumors (spot) in the slide of isolated
tumor from P12. Expression levels of SPP1or CXCL9 in each spot are shown by

the color gradient. f, Scatter plot showing a significant negative correlation
between the colocalization levels of CXCL9-CXCR3 and cytotoxic signature and
the distances to tumors (spot) in the slide from P11. g, Heatmap showing the
averaged module scores of M1 and M2 signatures among macrophage subsets.
h, Boxplots showing the fractions of CXCL9+ macrophages in matched samples
from 3 responders and 4 non-responders at baseline and post-treatment.

i, Box plots of average expression of CXCL9 in CXCL9+ macrophages in matched
samples from 3 responders and 4 non-responders at baseline and post-treatment
phase. This result indicates that CXCL9 expression in macrophages before

but not post-treatment is high in responders. In panels ¢, e and f, the curves
were fitted using locally weighted regression (loess), linear and loess models,
respectively. Two-sided P values were determined by Pearson’s correlation test.
Inpanelsa, b, handi, aone-sided t-test was used to determine the statistical
significance. For the boxplots, box limits denote the first and third quartiles,
with the median shownin the center and whiskers covering data within1.5x the
interquartile range from the box. Related to Fig. 5.
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Extended Data Fig. 6 | Spatial distribution of T and B cells and identification of

Location 88 TLS B3 Stroma

TLSs. a, The spatial distribution of T cells in patient 11 (P11). The darker red color
represents a higher cell-type proportion. b, The spatial distribution of B cells
P11. The darker red color represents a higher cell-type proportion. ¢, Boxplots
showing the differences in T cell subtype proportions in tumor (n =150), tumor
boundary (n=162) and stromal (n = 3651) regions in patient P11. Statistical

significance was determined by two-sided Wilcoxon rank-sum test. ns: P >= 0.05;

*:P <0.05;*:P <0.01;**:P < 0.001; ***: P < 0.0001. d, Heat-dot plot showing
cell-type colocalizations in patient P11. Pearson correlations of the estimated
cell-type proportions were calculated for each pair of cell types across all spots.
The color and size of the dot represent the correlation coefficient. A positive
correlation coefficient indicates colocalization of the cell-type pair, whereas
negative valuesindicate exclusion of the two cell types from each other.

Location B TLSE Stroma

Theblack rectangle highlights the colocalization of T and B cells. e, Pathological
examination of TLSs in patient P11. Scale bar: 1 mm. All Visium slides (n =17)
were examined. f, The automated TLS identification workflow named Space
Scanner through combining H&E image and ST data. g, Location of identified
TLSsin patient P11. Red and gray colors represent TLSs and surrounding stroma
respectively. h, Heatmap showing the averaged expression of 12 chemokinesin
TLSs and stroma from patient P11. i, Boxplots showing the differences in B (left
panels) and T (right panels) cell subtype proportions within TLSs (n =210) and
stroma (n =294) in patient P11. Statistical significance was determined by two-
sided Wilcoxon rank-sum test. ns: P >=0.05; *: P < 0.05; **: P < 0.01; **: P < 0.001;
****: P <0.000L1. For the boxplots in c and i, the box limits denote the firstand
third quartiles, with the median shown in the center and whiskers covering data
within 1.5x the interquartile range from the box.
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Extended Data Fig. 7 | Spatial distributions of T and B cells and identification
of TLSs. a, Spatial distributions of CD4 T cells, Treg and CD8 T cells, relative to
tumor spotsin patient P11. CD4 and CD8 T cell proportions were measured

by the sum of the corresponding subtypes. The darker red color in the left 3
panels represents higher cell-type proportions. The right panel shows the
definition of tumor spots, tumor-boundaries and stroma regions in patient

Meutrophil @ Mast
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Endothedium B CD31° stromal
P11.b, The spatial distribution of T (top) and B cell proportions (middle) and
thelocation of identified TLSs (bottom) in samples excluding P11. ¢, Cell-type
compositions of the identified TLSs in 14 samples. The average proportions of
all TLS spots were calculated to represent the cellular compositions of each TLS.
Related to Extended Data Fig.6.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8| Characteristics of TLSs in different stages. a, Spatial
distributions of LTB expression in all slides with TLSs. b, Boxplots showing the
differencesin B (left) and T (right) subtype proportionsin TLSs at different stages
fromall samples. For each TLS, the average subtype proportions of covered

spots were calculated to represent the cellular subtype proportions of each

TLS. lymphoid aggregates, n = 42; Activated TLS, n = 71; Declining TLS, n =103;
Late TLS, n = 67. Statistical significance was determined by two-sided Wilcoxon
rank-sum test. ns: P >=0.05;*: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001.
The box limits denote the first and third quartiles, with the median shownin the

center and whiskers covering data within 1.5x the interquartile range from the
box. ¢, Bar plot showing the enriched Hallmark pathways in NMPR, related to

Fig. 6h. The color represents the significance. A P value denotes the enrichment
Pvalue of the pathway ID determined by Fisher’s exact test. d, PCA visualization
of the hypoxiasignature scorein all TLSs. e, The correlation between the hypoxia
signature score and the fraction of Treg (left) and CD4_TCF7 (right) in all TLSs.
Theblue lines are regression lines. The gray bands are 95% confidence bands for
the regression line. Each dot represents anidentified TLS. The two-sided P values
was measured by Pearson ‘s correlation test. Related to Fig. 6.
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Data collection  scRNA-seq FASTQ files were processed using the BD Rhapsody Whole Transcriptome Analysis (WTA) Pipeline and the CeleScope pipeline to
get a unique molecular identifier (UMI) matrix for each sample. Raw bulk RNA-seq FASTQ files were aligned on the hg38 genome reference
using the STAR aligner with default parameters. Salmon was used to quantitate gene expression by transcripts per kilobase million (TPM).

Data analysis The scRNA-seq matrix of read counts per gene per sample was further analyzed by the Seurat package (version 3.2.2). To identify malignant
cells from epithelia, we used the infercnvpy algorithm (version 0.2.0) to estimate the copy number variations (CNVs). Cell-cell interaction
analysis was conducted using CellPhoneDB (version 2.1.5), SingleCellSignalR (version 1.0) and NicheNet (version 1.0.0). Gene module
enrichment analysis was was conducted using AUCell (version 1.8.0). The cell signatures were estimated by ssGSEA method in the GSVA R
package (version 1.32.0). The analyses of lung adenocarcinoma (LUAD) from the TCGA database were performed on the TCGA visualization
web server, GEPIA2 (http://gepia2.cancer-pku.cn/). The generated gene-by-spot matrices were analyzed with the Seurat package (version
4.0.4). Spatial transcriptomics downstream deconvlution analysis was conducted using STRIDE (version 0.0.1b). The TLS maturation trajectory
analysis was conducted using Monocle2(version 2.14.0). Random forest model analysis was conducted using R package
'randomForest' (version 4.7-1.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw single-cell RNA-seq and spatial Transcriptomics data are deposited to Genome Sequence Archive of the BIG Data Center at the Beijing Institute of Genomics,
Chinese Academy of Science, under accession number HRA002509 (Accessible at http://bigd.big.ac.cn/gsa-human/browse/HRA002509).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study is mainly focused on the NSCLC microenvironment associated with resistance to immune-chemotherapy, so no

gender-based analyses have been performed.

Reporting on race, ethnicity, or  The socially relevant categorization variables have not been used in the manuscript,so no such analyses have been

other socially relevant performed.
groupings
Population characteristics 19 patients who were diagnosed with NSCLC are included in this study. All of them received the anti-PD-1 antibody plus

Recruitment

Ethics oversight

chemotherapy before undergoing surgical resection of NSCLC. Before recruitment,All participants were treatment-naive and
EGFR/ALK mutation negative. 3 of them are females, and 16 of them are males; 1 of patients were diagnosed at stage IB, 1 at
11B, 15 at IIIA, 1 at I1IB, 1 at IlIC. The age distribution is 45-75.

Treatment-naive patients with stage IB-1ll NSCLC with EGFR/ALK mutation negative were identified in Department of Thoracic
Surgery, Shanghai Pulmonary Hospital, and recruited for study. There was no potential self selection bias. Informed consent
was obtained from all human research subjects.

All human studies performed in accordance with ethical regulation, and pre-approved by the Ethics Committee of Shanghai
Pulmonary Hospital (No. K21-294).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

No statistical method was used to determine the patient sample size. The number of patient samples was primarily determined by the
availability of tumor samples in the trials and achievement of sequencing.

For scRNAseq, low quality cells with low number of expressed genes or high proportion of mitochondrial gene counts or doublets were
excluded from the dataset. For Spatial transcriptomic analysis, slides with bad-quality matched H&E image are excluded from the dataset.

The single-cell RNA-Sequencing and spatial transcriptomics experiments described in this study consisted of a an independent single replicate
per patient tumor. This was primarily due to the limited tissue samples collected from clinical specimens as well as funding limitations and is
typical for this field. However, the transcriptional signatures of the single-cell clusters identified in our dataset were consistent with prior
studies.

The patients in this study received Anti-PD-1 therapy and its design is not based on randomization. All the patients were treated with PD-1
antibody combined with chemotherapy. Previous studies have shown that it is the PD-1 pathway blockade that affect the state transition of
tumour-reactive T cells (Beltra et al, 2020), and this effect is therefore unlikely associated with covariates like age and gender. In addition, the
comparisons between pre- and post-treatment samples were well controlled because these samples were from the same patients and were
site-matched. Therefore, the covariates were not controlled.

Blinding was not relevant in our study as samples were collected from patients as they came into the clinic. As every sample was included in
the study and processed in the same standardized way, knowledge of clinical phenotypes would not affect the study.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? |:| Yes |:| No
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXX XX X[ s
OoOoOood

Plants

Antibodies

Antibodies used Anti-human COL11A1 Proteintech, 21841-1-AP
Anti-human DDR1 CST, 5583
Anti-human a-SMA Abcam, ab5694
Anti-human Pan-CK SIGMA-ALDRICH, C2562
Anti-human FAP Abcam, ab222924
Anti-human CD3 Abcam, ab135372
Anti-human SPP1 CST, 88742

Validation All the antibodies used in this study were commercial available antibodies, with validation procedures described on the
manufacturer’s websites as below:
Anti-human COL11A1 Proteintech, 21841-1-AP (https://www.thermofisher.cn/cn/zh/antibody/product/Collagen-Type-XI-Antibody-
Polyclonal/21841-1-AP; validated in human for IHC)
Anti-human DDR1 CST, 5583 (https://www.cellsignal.com/products/primary-antibodies/ddr1-d1g6-xp-rabbit-mab/5583
; validated in human for IHC)
Anti-human a-SMA Abcam, ab5694 (https://www.abcam.com/products/primary-antibodies/alpha-smooth-muscle-actin-antibody-
ab5694.html)
Anti-human FAP Abcam, ab222924 (https://www.abcam.cn/products/primary-antibodies/fibroblast-activation-protein-alpha-
antibody-epr20021-low-endotoxin-azide-free-ab222924.html)
Anti-human Pan-CK SIGMA-ALDRICH, C2562 (https://www.sigmaaldrich.cn/CN/zh/product/sigma/c2562)
Anti-human CD3 Abcam, ab135372 (https://www.abcam.cn/products/primary-antibodies/cd3-antibody-sp162-ab135372.html)
Anti-human SPP1 CST, 88742 (https://www.cellsignal.cn/products/primary-antibodies/osteopontin-spp1-e9z1d-rabbit-mab/88742)

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.
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Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.
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|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:




Yes

[ ] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems
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|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
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Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Oooddooods
Ooogoodd

Any other potentially harmful combination of experiments and agents

Plants

Seed stocks Not availaible

Novel plant genotypes  Not availaible

Authentication Not availaible

ChlIP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.




Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.
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Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both
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Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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