
Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-024-01998-yArticle

Multi-omic profiling highlights 
factors associated with resistance to 
immuno-chemotherapy in non-small-cell 
lung cancer
 

Yilv Yan1,11, Dongqing Sun2,3,11, Junjie Hu1,11, Yue Chen4,11, Liangdong Sun1, 
Huansha Yu1, Yicheng Xiong1, Zhida Huang1, Haoran Xia1, Xinsheng Zhu1, 
Dongliang Bian1, Fenghuan Sun1, Likun Hou5, Chunyan Wu5, Orion R. Fan6, 
Haiyang Hu    7, An Zeng    4,12  , Lele Zhang    7,12  , Yi Eve Sun    6,12  , 
Chenfei Wang    2,3,8,9,12   & Peng Zhang    1,10,12 

Although immune checkpoint blockade (ICB) therapies have shifted the 
treatment paradigm for non-small-cell lung cancer (NSCLC), many patients 
remain resistant. Here we characterize the tumor cell states and spatial 
cellular compositions of the NSCLC tumor microenvironment (TME) 
by analyzing single-cell transcriptomes of 232,080 cells and spatially 
resolved transcriptomes of tumors from 19 patients before and after ICB–
chemotherapy. We find that tumor cells and secreted phosphoprotein 
1-positive macrophages interact with collagen type XI alpha 1 chain-positive 
cancer-associated fibroblasts to stimulate the deposition and entanglement 
of collagen fibers at tumor boundaries, obstructing T cell infiltration 
and leading to poor prognosis. We also reveal distinct states of tertiary 
lymphoid structures (TLSs) in the TME. Activated TLSs are associated with 
improved prognosis, whereas a hypoxic microenvironment appears to 
suppress TLS development and is associated with poor prognosis. Our study 
provides novel insights into different cellular and molecular components 
corresponding to NSCLC ICB–chemotherapeutic responsiveness, which will 
benefit future individualized immuno-chemotherapy.

Immune checkpoint blockade (ICB) treatments have revolutionized 
non-small-cell lung cancer (NSCLC) care, even curing some patients 
with advanced-stage disease1–6. Neoadjuvant immuno-chemotherapy 
has shown greater effectiveness than ICB alone, with a response rate 
averaging 32% (18–63%)7. Many patients with NSCLC remain resistant to 
neoadjuvant immuno-chemotherapy and the molecular mechanisms 
behind this resistance are still unclear.

The tumor microenvironment (TME) includes diverse immune and 
stromal cells that contribute to tumor growth and immune escape8. 

Given the cell type diversity in the TME, pioneering studies have used 
single-cell RNA sequencing (scRNA-seq) to identify features linked 
to immunotherapy resistance. A recent study on NSCLC following 
neoadjuvant programmed cell death protein 1 (PD-1) blockade found 
that tissue-resident T cells are abundant in lung cancer TMEs but have 
reduced function9. Another study identified that a subset of dysfunc-
tional CD8+ T cells experience clonal revival after PD-1 blockade in 
NSCLC10. These studies collectively indicate that although neoadjuvant 
ICB therapy could partially reprogram the TME and increase CD8+ T cell 
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number variations (CNVs) using InferCNV17 (Fig. 1e and Extended Data 
Fig. 1b,c). Unsupervised analyses identified 21 epithelial subclusters: 
eight normal with distinct markers and 13 malignant (Extended Data 
Fig. 1d,e). In the epithelial cell compartment, malignant cells were 
essentially eliminated in responders following ICB–chemotherapy 
(Fig. 1e). We also observed alterations within the immune and stro-
mal compartments (Extended Data Fig. 1g). In the immune cell com-
partment, post-treatment non-responders exhibited an increased 
fraction of monocytes/macrophages and dendritic cells compared 
with pre-treatment levels (Fig. 1f). Furthermore, in the CD31− stro-
mal cell compartment, the proportion of collagen type XI alpha 1 
chain-positive (COL11A1+) cancer-associated fibroblasts (CAFs) was 
significantly higher in non-responders compared with responders, 
both at baseline and post-treatment (Fig. 1g). These results suggested 
the potential roles of such cells in affecting the responsiveness to 
ICB–chemotherapy. Although scRNA-seq provided valuable insights 
into the cellular compositions of the NSCLC TME, it lacked informa-
tion on the spatial distribution of cells within the tumor. Therefore, 
we performed spatial transcriptomic analyses using the GeoMx digital 
spatial profiler (DSP) platform and 10x Genomics Visium platform, 
respectively, on 14 treatment-naive specimens and 17 post-treatment 
specimens (Fig. 1b,h,i). In-depth analysis of scRNA-seq and spatial 
transcriptomics revealed several intriguing findings, as detailed in 
the following sections.

Defining cancer cell states related to treatment outcomes
Transcriptional heterogeneity in tumors is increasingly considered the 
foundation supporting tumor initiation, progression, metastasis and 
treatment resistance. Recent research has identified gene modules as 
the key characteristics that define cell states18–21. Utilizing scRNA-seq 
data, we initially examined the cell states of cancer cells. Through Har-
mony, we classified these cells into 14 subsets and annotated them via 
gene set enrichment analysis, with highly expressed markers (Fig. 2a,b).

The cell states clustered into two groups: one comprising inter-
feron (IFN), alveolar, estrogen, extracellular matrix and coagulation 
cell states and the other comprising squamous, nuclear factor eryth-
roid 2-related factor 2 (NRF2) target and cell-cycle-related cell states 
(Fig. 2c). Cancer cell state scores in these two groups were strongly 
anticorrelated (Fig. 2c). Some cancer cell state scores (for example, 
hypoxia, squamous, cell cycle, E2F target, NRF2 target and Myc tar-
get scores) were associated with poor survival across patients from 
The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) 
cohort (Fig. 2d). Conversely, cancer cell states including coagulation,  
alveolar, extracellular matrix, estrogen and IFN were linked to pro-
longed survival.

To investigate the role of cancer cell states in treatment, we com-
pared cell state scores of cancer cells during immunotherapy using 
scRNA-seq data. We found that the NRF2 target score was significantly 

infiltration, the environment remains somewhat suppressive, limiting 
long-term effectiveness. This underscores the need to explore other 
TME-associated cell types, such as stromal cells.

Although scRNA-seq has revealed crucial insights into TME hetero-
geneity across various cancers, its limitation lies in the loss of spatial 
and morphological information, making it challenging to study cell 
colocalization and construct spatial architectures of TME. For example, 
tertiary lymphoid structures (TLSs) are crucial for T cell priming, B cell 
activation and T and B cell differentiation11,12. TLSs are positively cor-
related with prognosis in most solid tumors and can predict responses 
to ICB therapies13,14. However, most scRNA-seq studies have not yet 
elucidated the geometric structures of TLSs or the mechanisms behind 
their formation, maturation and function in the TME, due to the lack 
of spatial organization information for B and T cells.

In this study, we integrate scRNA-seq and spatial transcriptomics to 
profile the cellular composition and spatial organization of tumor cells 
and the microenvironment before and after neoadjuvant ICB–chemo-
therapy in both responders and non-responders. We identify cancer 
cell states and important spatial compositions of stromal and immune 
cell types associated with poor responses to ICB–chemotherapy.  
Through computational analyses, we investigate the maturation pro-
cesses and potential functions of TLSs in NSCLC. Our study provides 
novel insights into the complex NSCLC ecosystem and identifies poten-
tial biomarkers for future combinatorial therapies.

Results
Study design and overview of the study cohort
To reveal alterations in NSCLC before and after ICB–chemotherapy, 
we employed scRNA-seq to profile 26 tumor samples from 19 patients 
with NSCLC before and after neoadjuvant therapy of anti-PD-1 and 
chemotherapy (Fig. 1a,b). Based on pathologic assessment, which is 
reliable in assessing ICB–chemotherapy treatment efficacy and predict-
ing survival15,16, six patients were classified as responders (including 
five with a pathologically complete response (pCR) and one with a 
major pathologic response (MPR)) and the remaining 13 patients were 
non-responders (having exhibited a non-major pathologic response 
(NMPR)) (Fig. 1b). Three responders and four non-responders had 
matched pre- and post-treatment tumor specimens (Fig. 1b). After 
quality control, we derived transcriptomes of 232,080 individual cells, 
with a median of 2,645 reads and 1,205 genes captured per cell. Unsu-
pervised clustering analyses were performed to decipher the cellular 
compositions, and canonical cell-type-specific markers were used for 
cell type annotation (Fig. 1c,d and Extended Data Figs. 1a,f and 2a–f).

We obtained 64,947 epithelial cells that formed two distinct 
major clusters (Fig. 1c), presumably representing normal and malig-
nant cells with different transcriptomic features. To better charac-
terize the heterogeneity of epithelial cells, we re-clustered these 
cells. We separated normal and malignant cells based on their copy 

Fig. 1 | Cellular and molecular characterization of NSCLC tissues before 
and after ICB–chemotherapy using combined scRNA-seq and spatial 
transcriptomic analysis. a, Workflow of the research design. b, Sample 
information for each patient who participated in this study. The dots for each 
associated assay indicate data availability. c, UMAP plot of all 232,080 cells  
from all sequenced samples, color coded to indicate the major cell lineages. 
d, UMAP plots of T, B, monocyte/macrophage (mono/macro), CD31− stromal, 
dendritic (DC) and endothelial cells, color coded to indicate subpopulations.  
e, UMAP plot of epithelium cells, color coded green and brown to indicate  
normal and malignant cells, respectively. f, Boxplot demonstrating the fractions 
of immune cell subtypes in matched samples from three responders and four 
non-responders at baseline (before treatment) and post-treatment. The center 
lines indicate median values and the lower and upper hinges represent 25th and 
75th percentiles, respectively. The whiskers denote 1.5× the interquartile range.  
A one-sided Wilcoxon test was used to determine statistical significance.  
g, Boxplot showing the fractions of fibroblast subtypes in the CD31− stromal 

lineage in matched samples from three responders and four non-responders at 
baseline and post-treatment. A one-sided Wilcoxon test was used to determine 
statistical significance. h, Left, NanoString GeoMx DSP spatial transcriptomics 
analysis of specimens from the treatment-naive cohort (n = 14). Right, selection 
of the ROIs: PANCK+ (tumor); α-SMA+ and adjacent tumor (boundary); α-SMA− 
and far from tumor (stromal); and CD20+ (lymphocyte aggregation (LA)). Scale 
bars, 50 μm. i, H&E staining of the specimens undergoing spatial transcriptomics 
using Visium (10x Genomics), from the cohort receiving immunotherapy 
(n = 17). Scale bars, 1 mm. AM, alveolar macrophage; cDC1/2 cell, conventional 
type 1/2 dendritic cells; GC, germinal center; ILC, innate lymphoid cells; LUSC, 
lung squamous cell carcinoma; LUAD, lung adenocarcinoma; mregDC, mature 
dendritic cell enriched in immunoregulatory molecules; NK, natural killer; pDC, 
plasmacytoid dendritic cell; PostNR, post-treatment non-responders; PostR, 
post-treatment responders; PreNR, pre-treatment non-responders; PreR, pre-
treatment responders; SMC, smooth muscle cell; ST, spatial transcriptomics; Treg 
cell, regulatory T cell. Panel a created with BioRender.com.
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higher in pre-treatment non-responders compared with pre-treatment 
responders, whereas the IFNγ score exhibited an opposite trend 
(Fig. 2e). This suggests that biological features of cancer cells may 
influence the clinical outcomes of immunotherapy. Using the DSP data, 
we examined pre-treatment tumor cell states. Similar to the cell state 
scores, the related genes of IFNγ and NRF2 targets were significantly 
enriched in responders and non-responders, respectively (Fig. 2f,g). We 
further explored the spatial relationship between these two cell states 

and other cell types (Fig. 2h). The IFNγ score showed a positive correla-
tion, whereas the NRF2 target score exhibited a negative correlation, 
with the proportion of adjacent immune cells (Fig. 2h,i). This suggests 
potential roles for cancer cell states in shaping the diverse TME.

Spatial maps of cellular compositions of NSCLC
To investigate the spatial organization and interactions of cellular 
components, we classified the post-treatment TME using Visium data. 

a

P0
1

P0
2

P0
3

P0
4

P0
5

P0
6

P0
7

P0
8

P0
9

P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

Sex
Pathology

Pathologic response

ST (Visium)
ST (GeoMX)

scRNA-seq

Bulk RNA-seq

H&E

Data avaliable
Before treatment
After treatment

Responder

Bulk RNA-seq

scRNA-seq

Spatial transcriptomics

Time points

Surgery

b

Sequencing

PD-1 inhibitor
+ chemotherapy

Patients with NSCLC (n = 19)

Non-responder

Pathologic response
MPR NMPR
pCR

Pathology
LUAD
LUSC

Female
Male

Sex

Biopsy

c
Epithelium

T

BPlasma

CD31– stromal

Endothelium

DC

Mast Neutrophil

Mono/macro

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

d
Treg1
CXCL13+ CD4+ T2
TCF7+ CD4+ T3
ILC4
Cycling T5
NR4A2+ CD4+ T6
IFNG+ CD4+ T7
GNLY+ NK8
FCGR3A+ NK9
GZMK+ CD8+ T10
HAVCR2+ CD8+ T11

T cells
COL11A1+ CAF
ADH1B+ CAF2
Pericyte3
MYH11+ pericyte4
SMC5
BCHE+ SMC6

CD31– stromal

Memory B1
Naive B2
GC B3
Cycling B4

B cells

cDC111
mregDC2
cDC23
pDC4

DC

Malignant1
Normal2

Epithelium

AM1
CCL18+ Macro2
CHI3L1+ Macro3
SPP1+ Macro4
CXCL3+ Macro5
SELENOP+ Macro6
CXCL9+ Macro7
FCGR3A+ Mono8
VEGFA+ Mono9

Mono/macro
Venule1
Capillary2
Tip3
Artery4
Lymphatic5

Endothelium

T cells

B cells Mono/Macro

CD31– stromal DC

Endothelium

f ge
PreR

PreNR PostNR

PostR

InferCNV

PreR (n = 3)
PreNR (n = 4)
PostR (n = 3)
PostNR (n = 4)

Matched cohort

TB Mast NeutrophilPlasmaMono/MacroDC

0

20

40

60

80

Fr
ac

tio
n 

of
 im

m
un

e 
ce

lls
 (%

)

P = 0.050

P = 0.015

P = 0.015

P = 0.029

P = 0.029

0

20

40

60

80

ADH1B+ CAFs COL11A1+ CAFs

Fr
ac

tio
n 

of
C

D
31

−  s
tr

om
al

 c
el

ls
 (%

)

P = 0.029
P = 0.029

P = 0.029

h

i

D
N

A
PA

N
C

K
α

-S
M

A
C

D
20

RO
I s

el
ec

tio
n

H
&

E

P01 P02 P03 P04 P05 P06 P07 P08 P9 P10 P11 P12 P15 P16 P17 P18 P19

LATumor Boundary StromalP04 P06P03 P07P01 P08P05

P12 P15P10P09 P11 P14 P19

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01998-y

UMAP 1

U
M

AP
 2

OXPHOS
INFα
NRF2 targets
E2F targets
Cell cycle
Myc targets
Squamous
Hypoxia
ECM
INFγ
Estrogen
Alveolar
Coagulation
Ribosome

Pearson
correlation

Outcome
Improved

a

c d e

g

h

i

f

b

NDUFB
5

COX7A
2
BST2

ISG15

ALD
H3A1

AKR1C
1

ATA
D2

RRM2

TO
P2A

CCNB1
NPM1

PA
BPC1

SPRR3
LY

PD3

SLC
2A

1
ENO2

COL1A
1

CAPN8
CCL5

GZMA
TF

F3
AGR2

SFT
PA

1
AGER

DPP4
MMP1

RPL9
P9

RPL9

Percent
expressed

0
25
50
75

−1
0
1
2

Average
expression

IN
Fγ

Es
tr

og
en

C
oa

gu
la

tio
n

Al
ve

ol
ar

IN
Fα

EC
M

H
yp

ox
ia

N
RF

2 
ta

rg
et

s
Sq

ua
m

ou
s

O
XP

H
O

S
Ri

bo
so

m
e

M
yc

 ta
rg

et
s

E2
F 

ta
rg

et
s

C
el

l c
yc

le

INFγ
Estrogen

Coagulation
Alveolar

INFα
ECM

Hypoxia
NRF2 targets

Squamous
OXPHOS

Ribosome
Myc targets
E2F targets

Cell cycle −0.5

0

0.5

Pearson
correlation

−0.5
0
0.5

P = 0.390

P = 0.080
P = 0.400

P = 0.029 P = 0.150

P = 0.047
P = 0.120

P = 0.029

NRF2 targets INFγ

−0.5

0

0.5

1.0

C
el

l s
ta

te
 s

co
re

 in
 m

ai
gn

an
t c

el
ls

 

Group

PreR (n = 3)
PreNR (n = 4)
PostR (n = 6)
PostNR (n = 13)

−2

0

2
–l

og
10

[P
 v

al
ue

]

O
XP

H
O

S

IN
Fα

N
RF

2 
ta

rg
et

s
E2

F 
ta

rg
et

s
C

el
l c

yc
le

M
yc

 ta
rg

et
s

Sq
ua

m
ou

s
H

yp
ox

ia

EC
M

Worse

IN
Fγ

Es
tr

og
en

Al
ve

ol
ar

C
oa

gu
la

tio
n

Ri
bo

so
m

e

HLA-DPA1

HLA-DPB1

HLA-DRA

CD74
C1QB

ABCC5

Significantly enriched in NR
Significantly enriched in R

AIF1

FYB1TYROBP

LYZLAPTM5

SRGN FCER1G

ALOX5AP
AKR1C1

CD52

IL2RG

CORO1A

B2M CD3E

KRT5EVI2BCCL5PTPRC
CD53

CD2

GIMAP7
PERP

S100A4
GBP5

LCP1

NKG7 GCLC

ADM CALML3

ALDH3A1

LSP1

0

2

4

6

−3 0 3
log2[fold change]

–l
og

10
[P

ad
j]

Up in non-responders
Up in responders

NRF2 target module gene
INFγ module gene

N
RF

2 
ta

rg
et

 s
co

re

IN
Fγ

 s
co

re

0.0028 0.0111

0.2

0.3

0.4

0.5

PreR
(n = 4)

PreNR
(n = 9)

−0.2

0

0.2

NRF2 targets
CD31− stromal

Endothelium
Normal epithelium

B
Neutrophil

INFγ
DC

Mono/macro
Plasma

Mast
T

N
RF

2 
ta

rg
et

s
C

D
31

−  s
tr

om
al

En
do

th
el

iu
m

N
or

m
al

ep
ith

el
iu

mB
N

eu
tr

op
hi

l
IN

FγD
C

M
on

o/
m

ac
ro

P0
3 

ST
 (V

is
iu

m
 p

la
tfo

rm
)

Percentage of all cells
Percentage of all cells

Pl
as

m
a

M
as

tT

Adjacent DC

Adjacent mono/macroINFγ score
High

High

Low

Low 0

0

0.16

0.08
 NRF2 targets score

PreR
(n = 4)

PreNR
(n = 9)

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01998-y

Four distinct regions were classified based on hematoxylin and eosin 
(H&E) staining and definitions of tumor compartments from previous 
studies22: tumor cores, invasive margins, isolated tumors and tumor 
stromal regions (Fig. 3a). As each spot from a Visium slide represents a 
mixture of cells, we performed cell type deconvolution analyses based 
on matched scRNA-seq data using STRIDE23. Consistent with the H&E 
images, tumor cores were predominately occupied by malignant cells, 
whereas the invasive margins and isolated tumors contained both 
malignant and nonmalignant cells. There were almost no visible malig-
nant cells in tumor stromal regions (Fig. 3a).

Unsupervised clustering of all spatial transcriptomics spots 
based on cell type composition identified 15 distinct cell type con-
texts (Fig. 3b). We hypothesized that these contexts represent 
potential spatial architecture that could be shared across patients, 
facilitating comparisons among different samples. We observed 
three malignancy-related cell type contexts (3, 10 and 13) and two 
fibroblastic cell type contexts (4 (enriched alcohol dehydrogenase 
1B-positive (ADH1B+) CAFs) and 8 (enriched COL11A1+ CAFs)), as well as 
four immune cell type contexts (1, 7, 9 and 12) (Fig. 3c,d and Extended 
Data Fig. 3a).

Spatial visualization of the contexts revealed valuable insights 
into their positional relationships and correlation with spatial archi-
tecture. For example, malignancy-related contexts 3 and 13 were sur-
rounded by fibroblastic context 8, implying that tumor cells interact 
with fibroblasts at tumor boundaries (Fig. 3e). Additionally, the posi-
tion of cell type context 9, enriched with germinal center B cells and 
CD4+CXCL13+ T cells, corresponded to the position of lymphocyte 
aggregation (Fig. 3e and Extended Data Fig. 3a). These results provide 
additional insight into cellular compositions at tumor boundaries, as 
well as the spatial architectures of immune cells.

COL11A1+ CAFs exhibit a pro-tumor phenotype
Since COL11A1+ and ADH1B+ CAFs showed different enrichment patterns 
in responders versus non-responders (Fig. 1g), we further explored the 
potential functions of the two distinct CAF subtypes. Previous studies 
categorized CAFs into two classes with different phenotypes in cancers: 
pro-tumor myofibroblastic CAFs (myCAFs) and inflammatory CAFs 
(iCAFs)24. ADH1B+ CAFs showed strong iCAF signatures and exhibited 
higher enrichment in tumor necrosis factor signaling and metabolic 
programs (Extended Data Fig. 4a,b).

Conversely, COL11A1+ CAFs were characterized by a pro-tumor 
myCAF phenotype, including heightened expression of extracellular 
matrix genes (FAP, POSTN and CTHRC1) and activated fibroblast markers 

such as GREM1 (Extended Data Figs. 2d and 4a). Gene set enrichment 
analysis revealed that gene signatures related to hypoxia, transform-
ing growth factor beta (TGFβ) signaling, epithelial-to-mesenchymal 
transition and angiogenesis were enriched in COL11A1+ CAFs (Extended 
Data Fig. 4b). Moreover, COL11A1+ CAFs also expressed LRRC15, closely 
resembling LRRC15+ CAFs reported to be induced by TGFβ signaling in 
recent studies25 (Extended Data Fig. 2d). NicheNet26 analysis identified 
TGFβ1 as a predicted driver ligand for COL11A1+ CAFs (Extended Data 
Fig. 4c). TGFβ has also been reported to promote tumorigenesis by 
shifting CAFs toward glycolysis27, echoing the finding that COL11A1+ 
CAFs had higher glycolysis signature gene expression than ADH1B+ 
CAFs (Extended Data Fig. 4b). Moreover, COL11A1+ CAFs differed from 
ADH1B+ CAFs in the extracellular matrix program, as COL11A1+ CAFs 
specifically expressed genes encoding fibrillar collagens, including 
COL10A1, COL11A1 and COL12A1 (Extended Data Fig. 2d). We also 
noticed that the expression of COL11A1 was significantly higher in 
non-responders before treatment (Extended Data Fig. 4d). Of the 
aforementioned collagen-encoding genes, COL11A1 was associated 
with a worse prognosis in the TCGA-LUAD cohort28 (Extended Data 
Fig. 4e). Overall, these findings suggest that ADH1B+ CAFs exhibit an 
iCAF phenotype with specific metabolic programs, whereas COL11A1+ 
CAFs exhibit a pro-tumor myCAF phenotype.

Accumulation of COL11A1+ CAFs at tumor boundaries
We compared the cell proportions at the tumor boundary before 
treatment between responders and non-responders. Non-responders 
exhibited a lower proportion of CD8+ T cells and a higher proportion 
of COL11A1+ CAFs than responders (Fig. 4a). Therefore, we hypoth-
esized that COL11A1+ CAFs at tumor boundaries potentially block 
the infiltration of T cells. We further explored the spatial distribu-
tion of COL11A1+ CAFs and ADH1B+ CAFs in tumor specimens. Inter-
estingly, COL11A1+ CAFs aggregated at the boundaries of isolated 
tumors but dramatically decreased in the stromal regions far away 
from malignant cells in non-responders (Fig. 4b and Extended Data 
Fig. 4f–h). In tumor core regions and invasive margins, tumors were 
enveloped by COL11A1+ CAFs (Fig. 4c,d). Meanwhile, these COL11A1+ 
CAFs were nearly absent from tumor stromal regions in both respond-
ers and non-responders (Extended Data Fig. 4i). In contrast, ADH1B+ 
CAFs were enriched in tumor stromal regions but absent at isolated 
tumor boundaries (Fig. 4b–d and Extended Data Fig. 4g,h). Con-
sistently, there were hardly any ADH1B+ CAFs in tumor core regions 
(Fig. 4c). Yet, ADH1B+ CAFs were predominant in tumor stromal slides 
(Extended Data Fig. 4i).

Fig. 2 | Cell states of cancer cells potentially define the response to  
ICB–chemotherapy. a, UMAP plot showing cancer cells colored by cancer cell 
state. b, Dot plot displaying the average expression and expressed percentage 
of representative markers of each cancer cell state. c, Pearson’s correlation of 
cancer cell state scores. d, Lollipop plot showing P values from Cox regression 
analysis linking cancer cell states to the clinical outcomes of patients from the 
TCGA-LUAD cohort. e, Boxplots showing the cell state scores for NRF2 targets 
(left) and IFNγ (right) in malignant cells from responders and non-responders 
during treatment. Sample numbers were as follows: n = 3 (PreR) n = 4 (PreNR), 
n = 6 (PostR) and n = 13 (PostNR). A one-sided Wilcoxon test was used to 
determine statistical significance. f, Volcano plot comparing responders’ and 
non-responders’ adjusted P values and fold changes across tumor ROIs.  

A two-sided Wilcoxon test was used to determine statistical significance.  
g, Boxplot showing the cell state scores for NRF2 targets (left) and IFNγ (right) in 
tumor ROIs from responders (n = 4) and non-responders (n = 9) before treatment 
using DSP data. A two-sided Wilcoxon test was used to determine statistical 
significance. h, Pearson’s correlation of cell state scores (for NRF2 targets, IFNγ 
and adjacent cell types) across all malignant spots from Visium slides. i, Spatial 
distributions of IFNγ scores, NRF2 target scores and the abundances of adjacent 
monocytes/macrophages and dendritic cells in the TME of P03. Scale bars, 1 mm. 
In e and g, center lines indicate median values and the lower and upper hinges 
represent 25th and 75th percentiles, respectively. The whiskers denote 1.5× the 
interquartile range. ECM, extracellular matrix; TNF, tumor necrosis factor.

Fig. 3 | Spatial cellular organization of NSCLC following ICB–chemotherapy. 
a, Left, schematic of tissue sampling. Right, H&E staining, the distribution of 
gene counts and the abundance of CAFs, lymphocytes and malignant cells in 
spatial transcriptomics slides of four histologically defined categories: the tumor 
core (n = 3), invasive margin (n = 1), isolated tumor (n = 2) and tumor stromal 
regions (n = 11). Scale bars, 1 mm. b, Schematic of how the 15 cell type contexts 
were defined. c, UMAP of 15 types of spatial transcriptomics spot based on cell 

type context. d, Highlighting of malignant cells, memory B cells, monocytes/
macrophages, CD8+ T cells, COL11A1+ CAFs and ADH1B+ CAFs based on the UMAP 
of cell type contexts. e, Spatial mapping of cell type contexts demonstrating 
the spatial distributions of three types of malignant cell context, the COL11A1+ 
CAF-enriched context and the memory B cell-enriched context. Scale bars, 1 mm. 
Panels a and b created with BioRender.com.
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The spatial relationship between COL11A1+ CAFs and cancer cells 
indicated their potential cell–cell interactions. Therefore, we per-
formed cell–cell interaction analysis to identify potential interactions. 
The receptor-ligand interactions between discoidin domain recep-
tor 1 (DDR1) and collagens (COL1A1, COL3A1, COL5A2 and COL11A1) 
were observed between tumor cells and COL11A1⁺ CAFs (Fig. 4e). 
Given that COL11A1 expression is specific to COL11A1+ CAFs (Extended 
Data Fig. 2d), we mainly focused on DDR1–COL11A1 colocalization 
for further analysis. The extracellular domain of DDR1 in tumors has 
been reported to facilitate collagen fiber alignment and to obstruct 
immune cell infiltration29. Furthermore, the colocalization levels 
of DDR1–COL11A1, as well as collagen formation signatures, were 
highly enriched at tumor boundaries, yet declined in regions far away 
from cancer (Fig. 4b and Extended Data Fig. 4j). Immunofluorescence 
labeling also confirmed that COL11A1+ CAFs were located surrounding 
DDR1+ malignant cells in NSCLC following ICB–chemotherapy (Fig. 4f 
and Supplementary Note 4).

To explore whether COL11A1+ CAFs impede immune cell infil-
tration, we examined the association between COL11A1+ CAFs and 
T cells. The abundance of COL11A1+ CAFs around the spot containing 
malignant cells was observed to be significantly negatively correlated 
with the abundance of T cells in all samples containing malignant cells 
(Fig. 4g). Meanwhile, we found that T cell infiltration was also anticor-
related with the abundance of COL11A1+ CAFs in the treatment-naive 
cohort (Fig. 4h).

We further assessed whether the abundance of COL11A1+ CAFs 
could be a reliable prognostic factor for NSCLC prognosis. The hazard 

ratios for cohorts receiving ICB therapy were higher compared with 
those of treatment-naive and chemotherapy cohorts30,31 (Fig. 4i), indi-
cating that COL11A1+ CAFs might have played a more important role 
in the ICB therapy cohort. To further verify whether the abundance 
of COL11A1+ CAFs could predict the responsiveness to ICB therapy, 
we examined another two independent cohorts. The proportions of 
COL11A1+ CAFs were again significantly higher in non-responders than 
responders before ICB treatment (Fig. 4j,k). Interestingly, even in a 
melanoma cohort32, we observed similar trends (Fig. 4l). Altogether, 
the above analyses collectively indicated that COL11A1+ CAFs might be 
an effective biomarker for predicting prognosis and responsiveness 
to ICB therapy.

Secreted phosphoprotein 1-positive macrophages colocalize 
with COL11A1+ CAFs, blocking T cells
Previous studies have shown that CAF–macrophage interactions 
promote tumor growth in colon and liver cancers33,34. We therefore 
explored the relationship between macrophages and COL11A1+ CAFs 
in NSCLC. We observed a positive correlation between the abundance 
of COL11A1+ CAFs and secreted phosphoprotein 1-positive (SPP1+) mac-
rophages in scRNA-seq data (Fig. 5a). Consistent with the results for 
COL11A1+ CAFs (Fig. 1g), the fractions of SPP1+ macrophages were also 
significantly higher in non-responders both pre- and post-treatment 
(Fig. 5b and Extended Data Fig. 5a,b). Like COL11A1+ CAFs, SPP1+ mac-
rophages also accumulated at tumor boundaries, showing a lower 
abundance and a dispersed distribution in stromal regions further 
away from the cancer (Fig. 5c–e and Extended Data Fig. 5c–e). Through 

Fig. 5 | SPP1+ macrophages colocalize with COL11A1+ CAFs, blocking T 
cells. a, Scatter plot showing a significant positive correlation between the 
fraction of COL11A1+ CAFs and the fraction of SPP1+ macrophages in single-cell 
samples. The black line represents the linear model and was fit using regression 
diagnostics after removing a hat value. b, Boxplot showing the fractions of 
SPP1+ macrophages in matched samples from three responders and four 
non-responders before and after treatment. A one-sided t-test was used to 
determine statistical significance. c, Spatial distributions of tumor spots, SPP1+ 
macrophages and CXCL9+ macrophages, COL11A1+ CAF-specific expression of 
CD44, expression of SPP1 and CXCL9 and colocalization levels between SPP1 
and CD44 and between CXCL9 and CXCR3 in the slide of isolated tumor from P11 
(NMPR). Cytotoxic signature scores for the same slide are included. d, Spatial 
distributions of tumor spots, SPP1+ macrophages and CXCL9+ macrophages 
and expression of CXCL9 in the slide of tumor core from P08 (NMPR). e, Spatial 
distributions of tumor spots, SPP1+ macrophages and CXCL9+ macrophages  
and expression of CXCL9 in the slide of invasive margin from P03. Scale bars in 
c–e, 1 mm. f, Cell–cell interactions between SPP1+ macrophages and COL11A1+ 

CAFs in P08, inferred by CellChat, highlighting the SPP1–CD44 ligand–receptor 
pair (red text). Two-sided P values were determined by Student’s t-test.  
g–i, Boxplots comparing the fractions of COL11A1+ CAFs (g), fractions of T cells 
(h) and colocalization levels of SPP1–CD44 (i) at tumor boundaries (≤3 spots) 
from a COL11A1+ CAF-low region (P03 ROI; n = 166) and two COL11A1+ CAF-
enveloped regions (P08 (n = 970) and P11 (n = 150)). A two-sided Wilcoxon test 
was used to determine statistical significance. j, Kaplan–Meier survival curve for 
the TCGA-LUAD cohort, dichotomized by COL11A1+ CAF and SPP1+ macrophage 
signature scores. The survival curves were compared by log-rank test.  
k, Multiplex immunofluorescence staining from another NSCLC sample (P8T) 
receiving ICB–chemotherapy, showing the spatial locations of COL11A1+ CAFs 
(α-SMA+ and fibroblast activation protein positive (FAP+)), SPP1+ macrophages 
(SPP1+ and PanCK−), T cells (CD3+) and tumor cells (PanCK+). Scale bars, 100 μm. 
For the boxplots in b and g–i, the box limits denote the first and third quartiles, 
with the median shown in the center and the whiskers covering data within  
1.5× the interquartile range from the box.

Fig. 4 | Spatial location and potential pro-carcinogenic function of COL11A1+ 
CAFs. a, Boxplots showing the fractions of T cells and COL11A1+ CAFs in  
boundary ROIs from responders (n = 11) and non-responders (n = 15) pre-
treatment. b, Spatial distributions of tumor spots, COL11A1+ CAFs and ADH1B+ 
CAFs, expression levels of DDR1, COL11A1 and ADH1B, colocalization levels of 
DDR1–COL11A1 and collagen formation signature scores in an isolated tumor 
sample from P11 (NMPR). The green dots and areas with green dashed borders 
represent tumor spots and tumor regions, respectively. c, Spatial distributions  
of tumor spots, COL11A1+ CAFs and ADH1B+ CAFs in a tumor core sample from 
P08 (NMPR). Note that ADH1B+ CAFs were devoid of tumor-rich regions.  
d, Spatial distributions of tumor spots, COL11A1+ CAFs and ADH1B+ CAFs in an 
invasive margin sample from P03 (NMPR). Scale bars in b–d, 1 mm. e, Cell–cell 
communication network between malignant cells and COL11A1+ CAFs in P11. 
f, Multiplex immunofluorescence staining showing the spatial locations of 
COL11A1+ fibroblasts (COL11A1+ and α-SMA+) and DDR1+ malignant cells in post-
ICB–chemotherapy specimens. Scale bars, 100 μm. g, Scatter plot showing the 
results of a Pearson’s correlation test for the proportions of COL11A1+ CAFs and  
T cells near tumor cells in the Visium spatial transcriptomics cohort following 
ICB–chemotherapy. h, Scatter plot of the correlation between the proportion 

of CD8+ T cells (calculated using the Estimating the Proportion of Immune 
and Cancer cells (EPIC) algorithm) and the proportion of COL11A1+ CAFs in 
the TCGA-LUAD cohort (treatment naive). The red line represents the linear 
model and was fit using regression diagnostics. i, Forest plot of univariable 
Cox regression analysis for the NSCLC cohort studies. The red dots represent 
hazard ratios (HRs) of univariate Cox analysis. The black lines represent the 
95% confidence interval (CI) for each hazard ratio. The P values were calculated 
using the Cox proportional model. j, Boxplot showing the fractions of COL11A1+ 
CAFs of responders (R; n = 14) and non-responders (NR; n = 22), estimated 
using CIBERSORTx, in the Stand Up To Cancer–Mark Foundation for Cancer 
Research subgroup cohort before ICB therapy. k, Boxplot showing the fractions 
of COL11A1+ CAFs of responders (n = 9) and non-responders (n = 15), estimated 
using CIBERSORTx, in an independent NSCLC cohort before ICB–chemotherapy. 
l, Boxplot showing the fractions of COL11A1+ CAFs among all fibroblasts in 
responders (n = 10) and non-responders (n = 39), estimated using CIBERSORTx, 
in a melanoma cohort (GSE78220) before ICB treatment. For the boxplots in a and 
j–l, the box limits denote the first and third quartiles, with the median shown in 
the center and the whiskers covering data within 1.5× the interquartile range from 
the box. *P <0.05; **P < 0.01.
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cell–cell interactions between SPP1+ macrophages and COL11A1+ CAFs, 
we noticed enrichment of the SPP1–CD44 pair (Fig. 5f). SPP1 secreted 
by macrophages promotes the proliferation and activation of CAFs 
and increases the deposition of collagen35. Interestingly, the COL11A1+ 
CAF-low region, with a higher level of T cell infiltration, also had sig-
nificantly lower colocalization levels of SPP1–CD44 compared with 
COL11A1+ CAF-high regions (Fig. 5g–i). This suggested that SPP1+ mac-
rophages might cooperate with COL11A1+ CAFs to protect tumors from 
T cell infiltration. Patients exhibiting high levels of both COL11A1+ CAFs 
and SPP1+ macrophages consistently displayed the worst survival in 
the TCGA-LUAD cohort (Fig. 5j).

In addition, multiplex immunohistochemistry staining showed 
that SPP1+ macrophages (marked by SPP1) tended to localize at the 
tumor boundary with COL11A1+ CAFs (marked by alpha smooth muscle 
actin (α-SMA) and fibroblast activation protein; Extended Data Fig. 2d), 
whereas T cells (marked by CD3) were blocked by the combination of 
these two cell types (Fig. 5k and Supplementary Note 4). Moreover, 
CXCL9+ macrophages and cytotoxic immune cells failed to enter tumor 
beds in the presence of COL11A1+ CAFs (Supplementary Note 1).

Together, these results indicate that the formation of the tumor 
boundary structure associated with SPP1+ macrophages and COL11A1+ 
CAFs might contribute to the immunosuppressive microenvironment 
of NSCLC.

Comprehensive assessment of TLS maturation and recession
TLSs were prevalent in the TME of NSCLC after ICB–chemotherapy 
(see Supplementary Note 2). Several studies have reported that TLSs 
in the TME follow sequential maturation stages36,37. The genesis of 
TLSs is believed to start from the local production of cytokines such 
as interleukin-7, which recruit lymphoid tissue inducer (LTi) cells to 
the site of inflammation. Then, LTi cells interact with stromal cells 
through the lymphotoxin α1β2–LTβ receptor signaling pathway to initi-
ate the formation of TLSs12. Interestingly, although TLSs were present 
in most samples, spatial distributions of LTβ–LTβ receptor signal were 
only detected in a few slides (Extended Data Fig. 8a). We therefore 
speculated that the apparent heterogeneity of TLSs across samples 
might reflect different maturation stages of TLSs. To comprehensively 
characterize the maturation process of TLSs, we gathered TLSs from 
all samples and projected them onto the same low-dimension space 
(Fig. 6a). Genes encoding TLS-initiating markers (RORC and IL7R) were 
indeed enriched in similar distributions, whereas those encoding func-
tional cytokines (LTB and CXCL13) were enriched in different subsets 
of TLSs (Fig. 6b). K-means clustering was utilized to distinguish the 
different maturation stages of TLSs (Fig. 6c), which included early 
lymphoid aggregates (featured by high expression of LTi markers and 
low cytokine expression), activated TLSs (high cytokine expression), 

declining TLSs (decreased cytokine expression) and late TLSs (very 
low cytokine expression) (Fig. 6c).

We further investigated the immune cell subtype compositions of 
TLSs at different stages (Fig. 6d, Extended Data Fig. 8b and Supplemen-
tary Note 3). These results collectively suggested that germinal center 
B cells, effector memory CD4 T cells and follicular helper T cells are 
important for the activation and function of TLSs, whereas memory B 
cells are more related to the long-term effects of TLSs.

To explore the relationship between TLS maturation and respon-
siveness to ICB–chemotherapy, we visualized the distribution of TLSs 
in different states in each specimen. The maturation stages showed 
remarkable diversity among patients, and even within the same slide 
(Fig. 6e,f). In non-responders, the trend that more TLSs were detected 
with a decrease in the residual tumor load after immunotherapy 
implied potential anti-tumor roles of TLSs (Fig. 6e). In the non-pCR 
group, patients with activated TLSs had lower residual tumor fractions 
(Fig. 6g), indicating that activated TLSs are associated with better prog-
nosis14. Surprisingly, in contrast with non-responders, patients with a 
pCR had fewer TLSs, with almost all of them in the late stage (Fig. 6e). 
These findings potentially suggest a state of recessed immune response 
in the TMEs of responders. Moreover, the different maturation states 
of TLSs displayed distinct position biases. In particular, the major-
ity of intratumoral TLSs belonged to the early lymphoid aggregate 
state, whereas recessionary TLSs were closer to residual tumor cells 
compared with activated TLSs (Fig. 6f), implying the possibility of an 
immunosuppressive environment in the vicinity of tumor cells.

TLS maturation correlates with clinical outcome in NSCLC
The analyses above suggest that the maturation statuses of TLSs are 
highly heterogeneous among patients with different responses. We fur-
ther examined differences between responders’ and non-responders’ 
TLSs in the same state. Given that almost all TLSs observed in patients 
with a pCR were at the late stage, we performed a differential expres-
sion analysis of late TLSs in patients with a pCR versus an NMPR. 
Compared with those in responders, the late TLSs in non-responders 
expressed higher levels of HIF1A and ENO1, which have been reported 
to be involved in the response to hypoxia and process of glycolysis, 
respectively (Fig. 6h and Supplementary Table 3). In addition, genes 
encoding heat shock proteins, such as HSP90B1 and HSP90AA1, were 
highly expressed in the late TLSs of non-responders (Fig. 6h). Consider-
ing heat shock proteins are usually upregulated under different stress 
conditions, including hypoxia38, we conjectured that the late TLSs of 
non-responders were under a hypoxic environment. Further functional 
analyses revealed the enrichment of pathways related to glycolysis and 
hypoxia response in late TLSs of non-responders as well (Fig. 6i and 
Extended Data Fig. 8c). Interestingly, no highly expressed genes were 

Fig. 6 | Characteristics of TLSs at different stages, and clinical significance 
of TLSs. a, PCA visualization of all TLSs from all samples. b, PCA visualization 
of the expression of TLS-related marker genes. c, PCA visualization of k-means 
clustering and annotation of all TLSs. d, Heatmaps showing the enrichment of B 
(left) and T cell (right) subtypes in different TLS states. e, Distribution of TLSs in 
different states in all samples. f, Spatial distributions of TLSs at different stages 
in tumor samples from three non-responders. Scale bars, 1 mm. g, Boxplot 
showing the difference in residual tumor fractions between patients with and 
without activated TLSs in the non-pCR group. h, Volcano plot showing the 
differentially expressed genes in late TLSs from the NMPR group versus those 
from the pCR group. Two-sided Wilcoxon rank sum test was used to determine 
the statistical significance. i, Bar plot showing the enriched Gene Ontology-
biological process (GO-BP) pathways of significantly elevated genes in TLSs from 
NMPR as compared to those from pCR. The color represents the significance. 
A Fisher’s exact test was used to determine two-sided P values, denoting the 
enrichment P values of the pathway IDs. j, Boxplot showing the distributions 
of hypoxia signature scores of TLSs in different states: lymphoid aggregates 
(n = 42), activated TLSs (n = 71), declining TLSs (n = 103), late TLSs (pCR) (n = 26) 

and late TLSs (NMPR) (n = 39). A two-sided Wilcoxon rank-sum test was used to 
determine statistical significance. k, Correlation between activated TLS score 
and hypoxia signature score in another pre-treatment NSCLC cohort, measured 
by bulk RNA-seq. The blue line represents the regression line. The gray band is 
the 95% confidence interval for the regression line. Each scattered dot represents 
a sample from the cohort. The TLS and hypoxia scores were defined as the 
average expression of corresponding signature genes from Supplementary 
Table 4. The two-sided P value was determined by Pearson’s correlation test. 
l, Boxplot showing activated TLS signature scores before ICB–chemotherapy 
in non-responders (preNR; n = 15) and responders (preR; n = 9) from another 
independent NSCLC cohort, measured by bulk RNA-seq. A one-sided Wilcoxon 
rank-sum test was used to determine statistical significance. m, Kaplan–Meier 
survival curve for the TCGA-LUAD cohort, dichotomized by activated TLS 
signature. Statistical significance was determined by log-rank test. For the 
boxplots in g, j and l, the box limits denote the first and third quartiles, with 
the median shown in the center and the whiskers covering data within 1.5× the 
interquartile range from the box. mRNA, messenger RNA.
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identified in the late TLSs of patients with a pCR (Fig. 6h), suggesting 
a recessionary and quiescent state of these TLSs. Collectively, these 
results indicate that late TLSs of non-responders located in a hypoxic 
TME might be unfavorable for maintaining functional TLSs.

Interestingly, increased hypoxia signature scores were also 
associated with early-stage TLSs of non-responders following ICB– 
chemotherapy (Fig. 6j and Extended Data Fig. 8d). Previous studies 
have reported that hypoxia could cause enhancement of regulatory 
T cells in the TME39,40, consistent with the enrichment of regulatory 
T cells in the lymphoid aggregate state (Fig. 6d and Extended Data 
Fig. 8b). Another study discovered that hypoxia could enhance immu-
nosuppression by inhibiting CD4 effector T cells41. Indeed, we observed 
that the hypoxia signature score in TLSs was positively correlated 
with the fraction of regulatory T cells and negatively correlated with 

effector memory CD4 T cells (Extended Data Fig. 8e). We therefore 
speculated that hypoxia might create an immunosuppressive TME, 
thus suppressing TLS activation. To examine this, we calculated the 
correlation between the hypoxia score and TLS activation score in 
another NSCLC cohort. The overall negative correlation between these 
two scores implied that the hypoxic TME might have an inhibitory 
impact on TLS formation (Fig. 6k). Altogether, these results suggest 
that a hypoxic TME could promote regulatory T cell infiltration and 
inhibit CD4 effector memory T cells to suppress the formation and 
maintenance of TLSs.

Furthermore, we also investigated the potential of TLS matura-
tion status as a predictor of patient survival and response to ICB– 
chemotherapy. Most of the TLSs in the patients with an MPR were 
identified as activated TLSs using the spatial transcriptomics data, 
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whereas in the non-pCR group, patients with activated TLSs had  
lower percentages of residual tumor (Fig. 6e,g). Another independ-
ent NSCLC cohort also showed that the activated TLS signature was 
significantly higher in responders than non-responders at baseline 
(Fig. 6l). Additionally, a higher activated TLS signature was associated 
with better overall survival in TCGA-LUAD cohort patients (Fig. 6m). In 
brief, our analyses suggest that activated TLSs are beneficial for patient 
survival and might serve as a potential biomarker or therapeutic target 
for future immunotherapy.

Discussion
In this study, we delved into the transcriptional characteristics 
associated with resistance to ICB combined with chemotherapy in 
NSCLC by utilizing spatial transcriptomics and single-cell sequencing  
technology (Fig. 7).

Evidence has been accumulating on how cancer cell state plastic-
ity impacts cancer evolution and clinical outcomes42,43. In cervical 
squamous cell carcinoma, specific cancer cell states shape the TME and 
clinical outcomes44. In this study, we identified 14 distinct cancer cell 
states in NSCLC samples. Tumor cell states associated with NRF2 targets 
and IFNγ in treatment-naive samples were linked to poor and favorable 
responses to ICB–chemotherapy, respectively. NRF2 activation has 
been reported to promote lung cancer tumorigenesis45, accounts 
for multidrug resistance and is associated with poor prognosis46,47. 
Activation of the NRF2 pathway is associated with less CD3+CD8+ T cell 
infiltration into tumor beds48. Consistently, the NRF2 target cell state 
score was negatively correlated with immune infiltration in our data. 
This finding underscores the significance of NRF2 pathway activa-
tion as a potential resistance factor that may disrupt tumor–immune 
interactions in response to ICB–chemotherapy in NSCLC. In contrast, 
the proinflammatory IFNγ pathway could be involved in promoting 
cytotoxic immune cell infiltration and cancer elimination, leading to 
good prognosis.

The TME contains heterogeneous populations of fibroblasts with 
both tumor-promoting and suppressive roles49–52. The targeting of CAFs 
has been considered an effective way of enhancing ICB therapeutic 
efficacy in pre-clinical models53–55. In our study, we identified that 

COL11A1+ CAFs were significantly more abundant in non-responders 
than responders. Interestingly, we observed that COL11A1+ CAFs 
were predominantly localized at tumor boundary regions after ICB– 
chemotherapy, which could potentially block the contact between 
tumor cells and cytotoxic immune cells. We observed that collagen 
produced by COL11A1+ CAFs might interact with the tumor cell-surface 
receptor DDR1 at tumor boundaries. DDR1 has been reported to pro-
mote collagen fiber alignment to enhance tumor immune exclusion29. 
These results highlight common mechanisms for immune exclusion 
achieved by CAFs and suggest that COL11A1+ CAFs are a potential 
pan-cancer therapeutic target. Additionally, SPP1+ macrophages were 
present in the fibroblast compartment, which may promote collagen 
secretion by COL11A1+ CAFs through SPP1–CD44 interaction. Thus, 
blocking this interaction may represent an effective regimen by which 
to overcome immunotherapy resistance caused by CAF. However, 
CD44 is widely expressed in multiple cell lineages and navigating CD44 
inhibitors to antagonize CD44 in CAFs is challenging. In contrast, SPP1 
is selectively expressed in tumor-associated macrophages and tumor 
cells56 and has been reported to regulate colony stimulating factor 1 to 
recruit myeloid-derived suppressive cells into the TME57. Therefore, 
inhibition of SPP1 may confer a two birds, one stone benefit. A previous 
study reported that WDR5 inhibitors could reduce the expression of 
SPP1 by suppressing H3K4me3 in tumor cells and tumor-associated 
macrophages56. Although these WDR5 inhibitors have not been tested 
in a clinical setting, our study suggests that assessing their safety and 
efficacy in future clinical studies to treat NSCLC is plausible.

The colocalization of CD4 T and B cells indicated the prevalent 
presence of TLSs and this was validated by pathological examination. 
TLSs have been found in various cancer types and have been linked 
to favorable outcomes following ICB treatment in melanoma, sar-
coma and renal cell carcinoma13,58,59. Using tissue morphologies from 
H&E images and transcriptome features from spatial transcriptomics, 
we systematically evaluated the potential TLS maturation process in 
NSCLC TMEs. Our analyses identified four different stages of TLSs, 
which were in general comparable to the previous classification as 
early TLSs (lymphoid aggregates), primary follicular-like TLSs (with 
follicular dendritic cells but lacking germinal centers) and secondary 
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follicular-like TLSs (containing both follicular dendritic cells and ger-
minal centers)36,37. In addition, we defined a late-stage TLS as featuring 
low cytokine expression. Intriguingly, late TLSs exhibited differential 
states in responders and non-responders. Responders showed a qui-
escent state of late TLSs, possibly due to a lack of persistent tumor 
antigenic stimulation. In contrast, in non-responders, late TLSs and 
early lymphoid aggregates were in an immunosuppressive hypoxic 
state this may have suppressed both TLS formation and maintenance. 
It remains possible that in non-responders some lymphoid aggregate 
TLSs can never become mature and remain in an immature state due to 
suppression from the hypoxic environment60. The underlying regula-
tory mechanisms of hypoxia in TLS activation and suppression need 
to be further clarified by combining in vitro and in vivo perturbation 
experiments together with higher-resolution spatiotemporal analyses. 
Notably, our findings suggest that the evaluation of TLS status may 
have prognostic value for patients with NSCLC undergoing immuno-
therapy and could inform treatment decisions and patient manage-
ment strategies.

In summary, our study provides a high-resolution spatial cellular 
and molecular atlas of the TME in NSCLC before and after neoadjuvant 
ICB–chemotherapy. Using single-cell and spatial transcriptomic analy-
ses, we identified distinct tumor cell features and microenvironment 
compartments that displayed remarkable heterogeneity and dynamic 
changes in response to treatment. These results highlight the poten-
tial of therapies that target multiple components of the TME, includ-
ing fibroblasts, macrophages and TLSs, and suggest new avenues for 
developing combinatorial therapies.
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Methods
Patient cohorts and sample collection
We conducted a prospective study in patients with resectable 
NSCLC lacking EGFR/ALK mutations who received neoadjuvant ICB– 
chemotherapy (PD-1 inhibitors plus platinum-based chemotherapy). 
Before tissue acquisition and genomic sequencing for each patient, we 
obtained institutional review board approval from the Shanghai Pul-
monary Hospital (K21-294) and all patients provided written informed 
consent. Primary tumor tissues were obtained via percutaneous pul-
monary biopsy, bronchoscopy biopsy or endobronchial ultrasound 
biopsy before drug administration. Patients were treated with two to 
four cycles of neoadjuvant ICB–chemotherapy followed by surgery. 
More information is provided in Supplementary Table 1. Fresh tumor 
tissues were collected immediately following surgical resection.

Spatial transcriptomics data collection pre-treatment
DSP profiling (supported by YuceBio Technology) was performed on 
primary tumor tissues according to previously published methods61. 
Briefly, formalin-fixed, paraffin-embedded sections were hybridized 
using ultraviolet-photocleavable barcode-conjugated RNA in situ 
hybridization probes to capture and profile messenger RNA. Tumors 
and adjacent normal tissues were stained for PanCK, α-SMA and CD20 
markers. Slides were then loaded onto the GeoMx instrument for region 
of interest (ROI) selection based on immunofluorescence images and 
the results were confirmed by pathologists. Auto-segmentation was 
performed using custom ultraviolet illumination masks to create ROIs 
that resulted in photocleavable tags being released specifically in 
tumors (PanCK+ staining and tumor-enriched segments), boundaries 
(PanCK− and α-SMA+ staining and an adjacent tumor region), stromal 
regions (α-SMA− staining and normal tissue) and lymphoid aggregates 
(CD20+ staining). Cleaved barcodes were collected from each ROI and 
quantified via sequencing.

The GeoMx NGS Pipeline (version 2.2.0.2) was utilized to convert 
sequenced FASTQ files into DCC files. The data were subjected to qual-
ity control, including technical signal, technical background, probe 
and normalization. Technical signal quality control was executed to 
eliminate ROIs in cases where the alignment rate of the reads against 
the template sequence was <80%. The technical background included 
three indicators: a no template control (NTC) count; a negative probe 
count; and ROI parameters. The NTC count was employed to identify 
and detect template contamination. Any ROIs with an NTC number 
exceeding 1,000 were eradicated. The overall technical signal level 
was determined using the negative probe count, with the threshold 
being set to four counts. Furthermore, the parameters of the ROI were 
measured by the number of nuclei as well as the surface area. To meet 
the quality control standards, an ROI had to have a nucleus count of 
>100. The sizes of ROIs were standardized using cell numbers and 
area normalization to avoid inconsistences across them. High-quality 
data were then normalized with Quantile 3 (ref. 62) and used for down-
stream analysis. Immune and stromal cell abundances in the TME were 
determined with deconvolution analysis conducted using scTAPE 
(version 1.0)63.

Spatial transcriptomics data collection post-treatment
The 10x Genomics Visium spatial transcriptomics platform was used 
to analyze the transcriptome of cellular components within the tissue 
context from the immunotherapy-treated NSCLC tumors. Two to three 
pieces of tumor were embedded in optimal cutting temperature com-
pound by placing them cut side down into a plastic mold. The optimal 
cutting temperature compound-filled mold was then snap frozen in 
chilled isopentane and stored at −80 °C until use. Cryosections were 
then cut at 10 µm thickness and prepared for subsequent experiments, 
including H&E staining, permeabilization and library construction.  
Tissue optimization and library preparation were performed according 
to the manufacturer’s instructions with 10 min of permeabilization.  

The barcoded libraries were sequenced using an Illumina NovaSeq 
6000 platform with the PE150 sequencing mode. Raw sequencing 
data of spatial transcriptomics were subjected to quality control and 
mapped to the reference genome using Space Ranger (version 1.1).

scRNA-seq data generation and quality control
Details on tissue dissociation, the preparation of single-cell suspen-
sion and scRNA-seq can be found in Supplementary Note 4. For the 
BD Rhapsody platform, raw FASTQ files were processed using the 
BD Rhapsody Whole Transcriptome Analysis pipeline (https://www.
bdbiosciences.com/content/dam/bdb/marketing-documents/BD_ 
Single_Cell_Genomics_Bioinformatics_Handbook.pdf ) to obtain a 
unique molecular identifier (UMI) matrix for each sample. For the 
Singleron platform, raw reads were processed to generate gene 
expression matrices with the CeleScope pipeline (https://github.com/
singleron-RD/CeleScope). The matrix of read counts per sample was 
further analyzed with the Seurat64 package (version 4.0.4) in the R 
software (version 4.1.1). For each cell, we used four quality control 
measures. Cells falling into any of the following four categories were 
excluded: (1) <400 expressed genes; (2) >25% UMIs of mitochondrial 
genes; (3) >25% UMIs of ribosomal genes; and (4) a housekeeping score 
(defined as the sum of the UMIs of three canonical housekeeping genes: 
ACTB, GAPDH and MALAT1) of <1. To exclude data from droplets con-
taining more than one cell, doublet detection and removal were per-
formed using Scrublet65. An expected doublet rate parameter of 0.025 
was used and doublet score thresholds were chosen manually to divide 
putative singlet and neotypic doublet modes in the score distribution. 
Predicted doublets were then removed from gene-by-barcode matrices.

scRNA-seq data processing, cross-platform integration  
and clustering
The gene expression matrices were normalized using the Normal-
izeData function with default parameters. The normalized data were 
then scaled using the ScaleData function, with the unwanted variation 
regressed out from total counts by setting vars.to.regress=c(“nCount_
RNA”). The top 3,000 highly variable genes were detected using the 
FindVariableFeatures function. Principal component analysis (PCA) 
was performed based on the 3,000 most variable features using the 
RunPCA function. We observed a strong batch effect between the 
BD Rhapsody and Singleron platforms from the PCA plot. To adjust 
technical sources of variation between platforms, we used Harmony66 
(version 0.1.0). The first 20 principal components and a resolution of 
0.6 were used with the FindNeighbors and FindClusters functions. 
Dimension reduction was performed using the RunUMAP function. 
Major cell lineages were assigned to each cluster of cells using the 
abundance of canonical marker genes: epithelial cells (EPCAM), CD31− 
stromal cells (ITGB1 (CD29)+ and PECAM1 (CD31)−), endothelial cells 
(PECAM1), T cells (CD3D and CD3E), B cells (CD79A and MS4A1), plasma 
cells (CD79A and MZB1), monocytes/macrophages (CD14 and CD68), 
dendritic cells (HLA-DRA and CD1C), neutrophils (FCGR3B) and mast 
cells (MS4A2 and KIT).

Cell subpopulation identification
Cycling immune cells were picked out for reclustering to separate 
T cells, B cells, plasma cells and monocytes/macrophages. Each of the 
major lineages was then extracted to perform the second clustering, 
as described above, to identify subpopulations. We further clustered 
epithelial cells, fibroblasts, T cells, B cells and monocytes/macrophages 
individually. We used a resolution of 0.4 for epithelial cells, 0.3 for 
CD31− stromal cells, 0.6 for T cells, 0.3 for B cells and 0.4 for mono-
cytes/macrophages. Notably, after performing sublineage clustering, 
we manually removed clusters expressing two or more major lineage 
markers (such as LYZ for myeloid cells and CD3E for T cells) from the 
uniform manifold approximation and projection (UMAP) plot, which 
were possible doublets missed by Scrublet.
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CNV estimation and identification of malignant cells
To identify malignant cells among epithelial cells, we used the infercn-
vpy algorithm (version 0.2.0; https://github.com/icbi-lab/infercnvpy) 
to estimate CNVs. The infercnvpy algorithm was run with stromal cells 
(CD31− stromal cells and endothelial cells) as a normal reference and 
with default parameters. The CNV scores for each cell were calculated 
using the infercnvpy.tl.cnv_score function.

Cellular fraction calculation
For each sample, we calculated the cellular fraction for each major 
immune lineage (T cells, B cells, myeloid cells and so on). For the sub-
populations of major cell lineages, cellular proportions were calculated 
using the fractions in corresponding major lineages. The samples that 
had fewer than ten cells in a major lineage were removed for down-
stream statistical analysis. All of the statistical tests used are noted in 
the figure captions.

Gene module enrichment analysis
To estimate the signatures of the CAF phenotypes iCAF and myCAF, we 
calculated the enrichment scores for fibroblasts using the AddModule-
Score function in Seurat, with the gene list reported by Öhlund et al.24. 
The enrichment of hallmark signatures and metabolic activity within 
each fibroblast subset was quantified using the AUCell algorithm67 
(version 1.8.0) with Hallmark and Kyoto Encyclopedia of Genes and 
Genomes pathways. To quantify the tumor cell state, we defined cell 
states using a set of the 50 most differentially expressed genes for each 
malignant subset. The scores of tumor cell state were calculated using 
the R package GSVA (version 1.52.3)68.

Ligand–receptor interaction analysis
CellChat (version 1.1.3)69 was utilized to infer ligand–receptor interac-
tions. The cell–cell communication network was visualized using the 
netVisual_aggregate function. After annotating the object with relevant 
labels and identifying overexpressed genes, the communication prob-
ability was inferred using the computeCommunProb function. Cell–cell 
communications for each cell signaling pathway were generated with 
the computeCommunProbPathway function. Graphs were gener-
ated using the netVisual_chord_gene and netVisual_bubble functions. 
Receptor–ligand pairs related to DDR1 and summarized using Single-
CellSignalR70 (https://github.com/SCA-IRCM/SingleCellSignalR) were 
manually added to the default reference.

NicheNet analysis
NicheNet26 (version 1.0.0)—a powerful tool that predicts the ligands 
driving transcriptomic changes of target cells—was used to identify 
potential ligands that drive the specific phenotypes of fibroblast sub-
sets. As described previously71, we used all of the expressed genes 
of COL11A1+ CAFs as the background of genes and the top 50 genes 
ordered by log2[fold change] as the gene set of interest. Genes were 
considered to be expressed when they had non-zero values in at least 
10% of the cells within a cell type. We only used the expressed recep-
tors in COL11A1+ CAFs to construct ligand–receptor interactions and 
calculate ligand activity using the predict_ligand_activities function.

Survival analysis using the TCGA-LUAD cohort
The fragments per kilobase of transcript per million mapped reads 
matrix and clinical information on lung adenocarcinoma from the 
TCGA database were downloaded from UCSC Xena (http://xena.ucsc.
edu/). The average expression levels of marker genes of a cell type were 
calculated as the signature of that particular cell type. The patients 
were divided into high- and low-signature groups using a cutoff value 
estimated with the survminer (version 0.4.9) R package for COL11A1+ 
CAF signature (Supplementary Table 2). For the signature of SPP1+ 
macrophages, a median value was used to dichotomize patients. The 
Kaplan–Meier curve was generated using the survival (version 3.2.11) 

R package and compared using a log-rank test. A P value of <0.05 was 
considered statistically significant.

Fibroblast subset deconvolution in bulk RNA-seq
To assess whether the abundance of COL11A1+ CAFs in NSCLC could be 
a predictor of immunotherapy responses, we used the CIBERSORTx 
algorithm72 to estimate the fractions of CD31− stromal subsets from 
bulk RNA-seq data. We first used the UMI matrix of CD31− stromal cells 
labeled by subset name to create the signature matrix on the CIBER-
SORTx website (https://cibersortx.stanford.edu/) with the setting Min. 
Expression = 0.4. Then, the raw count matrix of bulk RNA-seq data was 
used as input to impute cell fractions with the generated signature 
matrix and default parameters.

Spatial deconvolution using STRIDE
To understand the spatial cell type distribution in the TME, we per-
formed deconvolution on the 10x Visium spatial transcriptomics data 
using STRIDE23 (version 0.0.1b) (https://github.com/wanglabtongji/
STRIDE) with scRNA-seq as a reference. Considering the heterogene-
ity of TMEs in NSCLC subtypes, STRIDE was implemented within lung 
adenocarcinoma and lung squamous cell carcinoma samples, respec-
tively. We first performed cell type deconvolution at the major lineage 
level; the top ~100 differentially expressed genes of each cell type were 
identified with the FindAllMarkers function of Seurat and used as sig-
nature genes to run STRIDE. To decipher the spatial distribution of cell 
subtypes, we also performed deconvolution at the minor lineage level. 
Specifically, we identified the top ~100 differentially expressed genes 
of each subtype and utilized them to run STRIDE within each major 
lineage cell type separately. STRIDE returns the relative abundances of 
cell subtypes, meaning that the sum of all subtype proportions within 
each cell type is 1. Then, the absolute proportion of each cell subtype 
was calculated as the product of the minor lineage proportion and the 
corresponding major lineage proportion.

Spatial transcriptomic data analysis
The generated gene-by-spot matrices were analyzed with the Seurat 
package (version 4.0.4) in R. Before downstream analysis, we filtered 
out spots with fewer than 200 genes detected and removed genes with 
fewer than ten read counts or expressed in fewer than three spots. Nor-
malization across spots was performed with the SCTransform function.

To explore the cytotoxic signature, we calculated the enrichment 
scores for each spot using the AddModuleScore function with the 
canonical cytotoxic markers (GZMA, GZMB, GZMK, GNLY, IFNG, PRF1 
and NKG7). Spatial features were visualized with the SpatialFeaturePlot 
function in Seurat. To estimate the signature of collagen formation 
in spatial transcriptomics, we calculated enrichment scores using 
the gene lists from the REACTOME_COLLAGEN_FORMATION path-
way (msigdb.v7.5.1.symbols.gmt; downloaded from https://www.
gsea-msigdb.org/gsea/index.jsp).

To explore the cell type contexts, we performed PCA and then 
UMAP using the RunPCA and RunUMAP functions based on the cell type 
proportion inferred by STRIDE. A total of 15 cell contexts were defined 
by the FindNeighbors and FindClusters functions with the parameters 
dims=1:10 and Resolution=0.8, respectively.

Visualization of cell abundance and gene expression in  
Visium data
As previously reported73, although multiple subpopulations from 
the same cell lineage could theoretically be present in a given spa-
tially barcoded spot, for the sake of stringency (given the low number 
of cells per spot), we assumed that the most abundant subpopula-
tion inferred per cell type had the dominant effect. Therefore, we 
displayed the spatial distribution of COL11A1+ CAFs in the COL11A1+ 
CAF-dominant spots and the distribution of ADH1B+ CAFs in ADH1B+ 
CAF-dominant spots. For SPP1+ and CXCL9+ macrophages, their 
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colocalization and communication with COL11A1+ CAFs had important 
biological effects, so we displayed the spatial distributions of SPP1+ 
and CXCL9+ macrophages in SPP1+ macrophage-dominant or CXCL9+ 
macrophage-dominant spots.

Since CD44 was widely expressed in immune, stromal and epi-
thelial cells, we normalized the expression of CD44 in spatial tran-
scriptomics by multiplying the fraction of COL11A1+ CAFs in a spot to 
represent the expression of CD44 in COL11A1+ CAFs (Fig. 5c). Besides 
SPP1+ macrophages, malignant cells also expressed SPP1. Therefore, we 
manually adjusted the expression of SPP1 in tumor spots to 0 to display 
the expression of SPP1 in non-tumor regions and perform SPP1–CD44 
colocalization analysis between SPP1+ macrophages and COL11A1+ CAFs 
in the Visium data (Fig. 5c).

Colocalization analysis in Visium data
We used an arithmetic product strategy to estimate the colocalization 
level at the spot level in spatial transcriptomics. For each spot, the 
colocalization level of a gene A–gene B pair was determined by the 
expression both within the spot and with surrounding spots. To be 
specific, for a spot (X ), the arithmetic product of the expression level 
of gene A (XgeneA) and gene B (XgeneB) was defined as the colocalization 
level within the spot, and the weight was set as 1. For the colocalization 
level from its surrounding spots (Yi), the weight was set to 0.5. Here we 
only considered the colocalization level between a spot and the nearest 
spots (n ≤ 6). Then, the colocalization level of the gene A–gene B pair 
in spot X  was calculated as

GeneA − gene B colocalization level = XLXR + 0.5
n
∑
i=1

Yi⋅geneAYi⋅geneB

TLS identification based on H&E image and Visium data
To study TLSs systematically, we developed an approach to identify all 
TLSs in spatial transcriptomics slides (https://github.com/wanglab-
tongji/Scanner), which combined both H&E staining images and spatial 
transcriptomics data (Extended Data Fig. 6f). TLSs primarily comprise 
lymphocytes with little cytoplasm and are organized compactly, result-
ing in darker purple loci separated from the surrounding brighter pink 
stroma. H&E images were converted to grayscale, and darker loci were 
extracted as potential TLSs. We checked the deconvolved cell type 
composition of spots within the extracted region, and the darker loci 
with a high percentage of lymphocytes (B and T cells) (>15%) were 
considered as TLSs. Of note, only TLSs with more than two spots were 
considered in downstream analysis. The scikit-image toolbox was 
applied for image processing.

Integrative analysis of TLSs
Each identified TLS covered multiple spots. The averaged gene expres-
sion of each spot was used to represent the gene expression profile 
of each TLS. To enable comprehensive and unbiased analyses, we 
integrated TLSs from all samples together. First, we performed PCA of 
TLSs in each sample separately. TLSs in P06 samples exhibited greater 
diversity among all samples. Given this, we utilized TLSs from P06 as a 
reference and projected TLSs from other samples onto the P06 space. 
Based on the top 100 genes with high positive or negative contributions 
from PC1 and PC2, the pseudotime of each TLS was calculated using the 
Monocle 2 (ref. 74) orderCells function. To classify TLSs into different 
stages, we performed k-means clustering on TLSs using the first two 
principal components (that is, PC1 and PC2) with k set to 4. The four 
clusters were then defined as lymphoid aggregates, activated TLSs, 
declining TLSs and late TLSs by their expression of TLS-related genes, 
including LTi markers (RORC and IL7R)75 and functional cytokines (LTB 
and CXCL13)12. The cluster with a high LTi signature represented the 
early initiation stage and the cluster with high expression of cytokines 
represented the activated TLS state. The cluster with decreasing 
cytokine expression and the one with low cytokine expression were 

defined as declining and late TLSs, respectively. The process from the 
early to the activated state was defined as activation and the process 
after activation from the declining stage to the late state was defined 
as recession (Fig. 6c).

Differential expression analysis in TLSs
To identify the differences between late TLSs for samples with differ-
ent responses, we compared the expression of all genes in spots of late 
TLSs from the NMRP versus pCR group. The significance of each gene 
was defined by Wilcoxon rank-sum test and adjusted by Bonferroni 
correction. Significantly highly expressed genes in the NMPR group 
(adjusted P value < 5 × 10−3 and average log[fold change] > 0.25) were 
selected for pathway enrichment analysis. The hypoxia signature was 
defined as the intersection between the significantly highly expressed 
genes in the NMPR group and genes from the HALLMARK_HYPOXIA 
gene set (Supplementary Table 3). The activated TLS signature was 
defined as the highly expressed genes in activated TLS spots compared 
with lymphoid aggregate spots (Supplementary Table 4).

Statistics and reproducibility
In Figs. 4a,l and 6g, a two-sided Wilcoxon test was used to determine 
statistical significance. In Fig. 4k,j, a one-sided Wilcoxon test was used 
to determine statistical significance. In Figs. 4f,h and 5a, two-sided P val-
ues were calculated by Pearson’s correlation test. The other statistical 
methods used are described in the captions. All immunofluorescence 
results were replicated independently at least three times to ensure 
reproducibility. A P value of <0.05 was used as the threshold for sig-
nificance, except where indicated otherwise. No statistical method 
was used to predetermine the sample size.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw scRNA-seq and spatial transcriptomics data have been depos-
ited to the Genome Sequence Archive of the BIG Data Center at the 
Beijing Institute of Genomics, Chinese Academy of Science, under 
accession number HRA002509 (accessible at http://bigd.big.ac.cn/
gsa-human). Processed bulk RNA-seq, scRNA-seq and spatial transcrip-
tomics data are available from Zenodo (accessible at https://zenodo.
org/records/8227624)76. The bulk RNA-seq data of the independent 
NSCLC cohort6 were acquired from the Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo) with the accession GSE207422. 
The bulk RNA-seq data of the Stand Up To Cancer–Mark Foundation 
for Cancer Research cohort31 are available from Zenodo (accessible 
at https://zenodo.org/records/7849582)77. The bulk RNA-seq data 
of the OAK and POPLAR cohorts30 were acquired from the European 
Genome-Phenome Archive (https://ega-archive.org) with the acces-
sion EGAS00001005013. The bulk RNA-seq data of the melanoma 
cohort32 were acquired from the Gene Expression Omnibus with the 
accession GSE78220.

Code availability
The code for identifying the TLSs in spatial transcriptomics slides can 
be found at https://github.com/wanglabtongji/Scanner. Code for 
inferring the cell type distribution in spatial transcriptomics data can 
be found at https://github.com/wanglabtongji/STRIDE.
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Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01998-y

Extended Data Fig. 1 | Characterization of immunotherapy-treated NSCLC 
by combined scRNA-seq and spatial transcriptomic analysis. a, Dot-heat plot 
showing marker genes for each major lineage. The color gradient represents  
the expression level, and the diameter represents the percentage of cells.  
b, Examples of inferred CNV profiles of malignant cells and normal epithelial 
cells, with endothelium and CD31− stromal cells as references. Left panel: 
lung squamous cell carcinoma (LUSC). Right panel: lung adenocarcinoma 
(LUAD). c, Dot-heat plot showing the markers of adeno, squamous and 

neuroendocrine tumors in P08 and P17.d, UMAP plot of all epithelial cells 
colored by subpopulations. e, Boxplot showing the CNV score of each epithelium 
subpopulation. Box limits denote the first and third quartiles with the median 
shown in the center and whiskers covering data within 1.5× the interquartile 
range from the box. f, Dot-heat plot showing the marker genes for each normal 
epithelial cluster. The color gradient represents the scaled expression level, 
and the diameter represents the percentage of cells. g, Bar plot showing the 
percentage of major lineages for each sample. Related to Fig. 1.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01998-y

Extended Data Fig. 2 | Characterization of immunotherapy-treated NSCLC 
by combined scRNA-seq and spatial transcriptomic analysis. a, Dot-heat plot 
showing the marker genes for each T cluster. The color gradient represents 
the scaled expression level, and the diameter represents the percentage of 
cells. b, Dot-heat plot showing the marker genes for each B cluster. The color 
gradient represents the scaled expression level, and the diameter represents the 
percentage of cells. c, Dot-heat plot showing the marker genes for each Mono/
Macro cluster. The color gradient represents the scaled expression level, and the 

diameter represents the percentage of cells. d, Dot-heat plot showing the marker 
genes for each CD31− stromal cluster. The color gradient represents the scaled 
expression level, and the diameter represents the percentage of cells. e, Dot-heat 
plot showing the marker genes for each DC cluster. The color gradient represents 
the scaled expression level, and the diameter represents the percentage of cells. 
f, Dot-heat plot showing the marker genes for each endothelial cluster. The color 
gradient represents the scaled expression level, and the diameter represents the 
percentage of cells. Related to Fig. 1.
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Extended Data Fig. 3 | Spatial mapping of the cellular context in NSCLC after ICB-chemotherapy. a, Scaled average cell-type compositions within each cell-type 
context. Related to Fig. 3.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Single-cell and spatial transcriptomic analyses of 
fibroblast subsets after ICB-chemotherapy. a, Violin plots showing iCAF and 
myCAF signature scores in COL11A1+ CAFs (n = 2359) and ADH1B+ CAFs (n = 956). 
Box limits denote the first and third quartiles with the median shown in the 
center and whiskers covering data within 1.5× the interquartile range from the 
box. b, Heatmap showing differentially enriched Hallmark and KEGG metabolic 
pathways in CD31− stromal subsets. c, Heatmap showing potential ligands driving 
the phenotype of COL11A1+ CAF cells. d, Boxplots showing the average expression 
of COL11A1 in COL11A1+ CAF cells from pre-treatment responders (PreR, n = 3), 
pre-treatment non-responders (PreNR, n = 4), post-treatment responders (PostR, 
n = 5) and post-treatment non-responders (PostNR, n = 12). The center line 
indicates the median, and the lower and upper hinges represent the 25th and 75th 
percentiles, respectively. Whiskers denote 1.5× interquartile range. A two-sided 
t test was used to determine the statistical significance. e, Kaplan-Meier survival 
curve of the TCGA-LUAD cohort dichotomized by the expression of COL11A1. The 
survival curves were compared by log-rank test. f, Spatial distribution of tumor 

spots, the fractions of COL11A1+ CAFs and ADH1B+ CAFs and the expression of 
COL11A1 and ADH1B in the slide of isolated tumor from P12. g,h, Scatter plots 
showing a significantly negative correlation between COL11A1+ CAF abundance 
and distance to tumors (spot) and a positive correlation between ADH1B+ CAF 
abundance and distance to tumors (spot) in the slides of isolated tumor from P11 
(g) and P12 (h). The expression levels of COL11A1 or ADH1B in each spot are shown 
by the color gradient. The curves were fitted using a locally weighted regression 
(loess) model. The two-sided P values were determined by Pearson’s correlation 
test. i, Spatial distribution of tumor spots, fractions of COL11A1+ CAFs and 
ADH1B+ CAFs and the expression of COL11A1 and ADH1B in the slides of tumor 
stromal regions from P02 and P09. j, Scatter plot showing a significant negative 
correlation between the colocalization levels of COL11A1−DDR1 and the collagen 
formation signatures and distance to tumors (spot) in the slide from P11. The 
curves were fitted using linear and locally weighted regression (loess) models, 
respectively. The two-sided P values were determined by Pearson’s correlation 
test. Related to Fig. 4.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Spatial transcriptomic and scRNA-seq analyses of 
macrophage subsets after ICB-chemotherapy. a, Boxplots showing the 
fractions of Mono/Macro subsets in matched samples from 3 responders and 
4 non-responders at baseline and post-treatment phase. b, Boxplots showing 
the fractions of Mono/Macro subsets from pre-treatment responders (PreR, 
n = 3), pre-treatment non-responders (PreNR, n = 4), post-treatment responders 
(PostR, n = 6) and post-treatment non-responders (PostNR, n = 13). c, Scattered 
plot showing a significant negative correlation between the fraction of SPP1+ 
macrophages or CXCL9+ macrophages and distance to tumors (spot) in the slide 
of isolated tumor from P11. The expression level of SPP1 or CXCL9 in each spot 
is shown by the color gradient. d, Spatial distribution of tumor spots, fractions 
of SPP1+ macrophages and CXCL9+ macrophages and the expression of SPP1 
and CXCL9 in the slide of isolated tumor from P12. e, Scattered plot showing a 
significant negative correlation between the fractions of SPP1+ macrophages or 
CXCL9+ macrophages and the distances to tumors (spot) in the slide of isolated 
tumor from P12. Expression levels of SPP1 or CXCL9 in each spot are shown by 

the color gradient. f, Scatter plot showing a significant negative correlation 
between the colocalization levels of CXCL9-CXCR3 and cytotoxic signature and 
the distances to tumors (spot) in the slide from P11. g, Heatmap showing the 
averaged module scores of M1 and M2 signatures among macrophage subsets. 
h, Boxplots showing the fractions of CXCL9+ macrophages in matched samples 
from 3 responders and 4 non-responders at baseline and post-treatment.  
i, Box plots of average expression of CXCL9 in CXCL9+ macrophages in matched 
samples from 3 responders and 4 non-responders at baseline and post-treatment 
phase. This result indicates that CXCL9 expression in macrophages before 
but not post-treatment is high in responders. In panels c, e and f, the curves 
were fitted using locally weighted regression (loess), linear and loess models, 
respectively. Two-sided P values were determined by Pearson’s correlation test. 
In panels a, b, h and i, a one-sided t-test was used to determine the statistical 
significance. For the boxplots, box limits denote the first and third quartiles, 
with the median shown in the center and whiskers covering data within 1.5× the 
interquartile range from the box. Related to Fig. 5.
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Extended Data Fig. 6 | Spatial distribution of T and B cells and identification of 
TLSs. a, The spatial distribution of T cells in patient 11 (P11). The darker red color 
represents a higher cell-type proportion. b, The spatial distribution of B cells 
P11. The darker red color represents a higher cell-type proportion. c, Boxplots 
showing the differences in T cell subtype proportions in tumor (n = 150), tumor 
boundary (n = 162) and stromal (n = 3651) regions in patient P11. Statistical 
significance was determined by two-sided Wilcoxon rank-sum test. ns: P > = 0.05; 
*: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001. d, Heat-dot plot showing 
cell-type colocalizations in patient P11. Pearson correlations of the estimated 
cell-type proportions were calculated for each pair of cell types across all spots. 
The color and size of the dot represent the correlation coefficient. A positive 
correlation coefficient indicates colocalization of the cell-type pair, whereas 
negative values indicate exclusion of the two cell types from each other.  

The black rectangle highlights the colocalization of T and B cells. e, Pathological 
examination of TLSs in patient P11. Scale bar: 1 mm. All Visium slides (n = 17) 
were examined. f, The automated TLS identification workflow named Space 
Scanner through combining H&E image and ST data. g, Location of identified 
TLSs in patient P11. Red and gray colors represent TLSs and surrounding stroma 
respectively. h, Heatmap showing the averaged expression of 12 chemokines in 
TLSs and stroma from patient P11. i, Boxplots showing the differences in B (left 
panels) and T (right panels) cell subtype proportions within TLSs (n = 210) and 
stroma (n = 294) in patient P11. Statistical significance was determined by two-
sided Wilcoxon rank-sum test. ns: P > = 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001; 
****: P < 0.0001. For the boxplots in c and i, the box limits denote the first and 
third quartiles, with the median shown in the center and whiskers covering data 
within 1.5× the interquartile range from the box.
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Extended Data Fig. 7 | Spatial distributions of T and B cells and identification 
of TLSs. a, Spatial distributions of CD4 T cells, Treg and CD8 T cells, relative to 
tumor spots in patient P11. CD4 and CD8 T cell proportions were measured  
by the sum of the corresponding subtypes. The darker red color in the left 3 
panels represents higher cell-type proportions. The right panel shows the 
definition of tumor spots, tumor-boundaries and stroma regions in patient 

P11. b, The spatial distribution of T (top) and B cell proportions (middle) and 
the location of identified TLSs (bottom) in samples excluding P11. c, Cell-type 
compositions of the identified TLSs in 14 samples. The average proportions of 
all TLS spots were calculated to represent the cellular compositions of each TLS. 
Related to Extended Data Fig.6.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Characteristics of TLSs in different stages. a, Spatial 
distributions of LTB expression in all slides with TLSs. b, Boxplots showing the 
differences in B (left) and T (right) subtype proportions in TLSs at different stages 
from all samples. For each TLS, the average subtype proportions of covered 
spots were calculated to represent the cellular subtype proportions of each 
TLS. lymphoid aggregates, n = 42; Activated TLS, n = 71; Declining TLS, n = 103; 
Late TLS, n = 67. Statistical significance was determined by two-sided Wilcoxon 
rank-sum test. ns: P > = 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001. 
The box limits denote the first and third quartiles, with the median shown in the 

center and whiskers covering data within 1.5× the interquartile range from the 
box. c, Bar plot showing the enriched Hallmark pathways in NMPR, related to 
Fig. 6h. The color represents the significance. A P value denotes the enrichment 
P value of the pathway ID determined by Fisher’s exact test. d, PCA visualization 
of the hypoxia signature score in all TLSs. e, The correlation between the hypoxia 
signature score and the fraction of Treg (left) and CD4_TCF7 (right) in all TLSs. 
The blue lines are regression lines. The gray bands are 95% confidence bands for 
the regression line. Each dot represents an identified TLS. The two-sided P values 
was measured by Pearson ‘s correlation test. Related to Fig. 6.
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