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Single-cell dissection of multifocal
bladder cancer reveals malignant and
immune cells variation between primary
and recurrent tumor lesions

Check for updates

Shenghua Liu 1,7 , Chenchen Feng1,7, Linyi Tan1,7, Dengwei Zhang2, Yong-xin Li2, Ya Han 3,4 &
Chenfei Wang 3,4,5,6

Bladder carcinoma (BLCA) is characterized by a high rate of post-surgery recurrence andmultifocality.
Multifocal tumors have a higher risk of recurrence compared to single tumors, significantly impacting
bladder cancer-specific mortality. However, the interregional or intraregional heterogeneity within
both primary and recurrent tumors remains poorly understood. Here, we employed single-cell RNA
sequencing to analyze tumor lesions from five multifocal bladder cancer patients comprising three
primary tumors and two recurrent tumors. Our findings revealed that malignant cells derived from
recurrent multifocal bladder cancer exhibited higher interregional transcriptional similarity and
consistent cellular communication. Furthermore, our analysis uncovered that malignant cells from
recurrent tumorsmay evade immunedestruction by suppressing cytokine responses and natural killer
cell activity. Notably, we identified apreference for the expression of the tryptophanmetabolic enzyme
IL4I1 on SPP1+ macrophages in recurrent tumors. Functional analyses have revealed that IL4I1 may
promotes tumor progression in recurrent tumors by activating the aryl hydrocarbon receptor (AHR)
and recruiting regulatory T cells to suppress adaptive immunity. Taken together, our study provides a
comprehensive understanding of primary and recurrent multifocal bladder tumors, offering valuable
resources for analyzing the multifocality and recurrence of bladder cancer.

Bladder cancer (BLCA) is a significant health concern worldwide1. Non-
muscle-invasive bladder cancer (NMIBC) accounts for 70%–75% of these
cases and is typically treated through surgical resection2,3. Despite efforts to
reduce recurrence and progression using intravesical chemotherapy or
bacillus Calmette-Guérin infusion after tumor removal, a substantial
number of patients still experience disease recurrence and progression to
muscle-invasive bladder cancer (MIBC), especially those with multifocal
tumors4,5.Multifocal tumors carry a40%higher riskof recurrence compared
to single tumors, and distinguishing them from recurrence based on clinical
symptoms alone can be challenging6. Therefore, there is a critical need for

more precise diagnostic and treatment approaches. Previous multi-level
analysis of human cancer tissue unveils a vast degree of molecular hetero-
geneity among cells andmoleculeswithin each tumor lesion7,8. Investigating
the tumor microenvironments (TME) of multifocal and recurrent tumors
may contribute to unveiling the variation betweenmultifocal tumors within
primary or recurrent tumors, and will aid in the development of more
precise diagnostic and treatment approaches.

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful
technology for investigating the intratumoral heterogeneity of cell compo-
sition and communication within the tumor microenvironment (TME)9–11.
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Recent studies utilizing scRNA-seq to explore bladder cancer (BLCA) have
uncovered the diverse nature of the TME and identified specific cell types
that play crucial roles in either promoting or inhibiting tumor progression,
as well as influencing immunotherapy response12. For example, the com-
bination of scRNA-seq andT-cell receptor (TCR) sequencing has shed light
on the existence of distinct tumor-specific and cytotoxic CD4+ T-cell states
capable of selectively eradicating autologous tumors throughMHC class II-
dependent mechanisms13. This finding provides predictive value for anti-
PD-L1 therapy in bladder cancer14,15. Furthermore, stromal cells, such as
SLC14A1+ cancer-associated fibroblasts (CAFs), have been implicated in
promoting BLCA stemness through the paracrine pathway involving
WNT5A16. While previous studies have reported various cell types involved
in bladder cancer progression and immunotherapy response, they have
often overlooked the heterogeneity of malignant cells between different
lesions in primary or recurrent tumors17,18. The evolution and heterogeneity
of malignant cells can contribute to intratumor heterogeneity by exploiting
different cell types within the tumor tissue to establish a supportive
microenvironment for tumor growth or by competing for nutrients and
inducingmetabolic reprogramming in non-cancer cells, thereby facilitating
tumor recurrence19–21. Therefore, it is crucial to unravel the intratumor and
intertumoral heterogeneity underlying primary and recurrent tumors to
gain a comprehensive understanding of bladder cancer.

In this study, we analyzed distinct tumor lesions from five bladder
patients, encompassing three primary and two recurrent cases. We
employed scRNA-seq to examine cellular heterogeneity and intercellular
crosstalk within the primary and recurrent tumormicroenvironments. Our
findings indicate that the expression patterns and communication networks
ofmalignant cells derived fromdistinct lesions aremore similar in recurrent
tumors compared to primary tumors. Additionally, through a comparison
of primary and recurrent-derived malignant cells, we observed distinct
transcriptomic and metabolic features in recurrent malignant cells when
compared to their primary counterparts. Finally, we discussed the char-
acteristic differences in immune cells between recurrent and primary
tumors. Overall, our study significantly advances our understanding of the
variations within the tumor microenvironment of primary and recurrent
bladder tumors, offering valuable insights into the identificationof recurrent
biomarkers and potential therapeutic targets.

Results
Malignant cells in recurrent patients exhibited higher inter-
regional similarity
To investigate the heterogeneity of tumor microenvironment in multi-
focal bladder cancer between primary and recurrent tumors, we collected
two separate surgical tumor specimens from five treatment-naive patients
with multifocal bladder cancer. This included three primary and two
recurrent patients, and the specimens were subjected to scRNA-seq
analysis (Fig. 1A). Detailed clinical and pathological information, such as
tumor grade, TNM stage, and tumor site, can be found in Table S1. In
total, we analyzed 10 samples, and the distinct lesion-derived tumor tis-
sues from one patient are referred to as R1 and R2. After implementing
quality control measures and removing doublets, we identified 121,554
high-quality cells and annotated them into 10 major cell types (Fig. 1B,
Supplementary Fig. 1A–C). Notably, we observed that malignant cells
derived from recurrent patients formed patient-specific clusters (Sup-
plementary Fig. 1D). In contrast, malignant cells from primary tumors
exhibited greater diversity and were clustered based on both regions and
patients, indicating variations in interregional heterogeneity between
recurrent and primary tumors, as well as the potential presence of batch
effects. To reduce technical noise, we corrected for these batch effects and
found that the cells were grouped according to cell type (Fig. 1C and
Supplementary Fig. 1E). Additionally, the proportion of malignant cells
varied among different patients but showed larger similarity within
regions derived from the same patient, particularly in the case of recurrent
patients (Fig. 1D). Furthermore, hierarchical clustering analysis of the
regions revealed that malignant cells from the same patients tended to

cluster together, indicating a smaller interregional heterogeneity com-
pared to intertumoral heterogeneity (Fig. 1E).

To quantitively assess the heterogeneity of malignant cells, we calcu-
lated the intraregional similarity (IAS) score by examining the pairwise
correlation distribution of malignant cells within each specific region7.
Additionally, we determined the interregional similarity (IRS) score by
measuring the correlation ofmalignant cells between two regionswithin the
samepatient. For comparison,we also calculated the intertumoral similarity
(ITS) score among five patients. Remarkably, the tumor regions within
recurrent patients exhibitedhigher IAS scores compared to primary tumors,
while regional differences within each tumor still existed (Fig. 1F). Con-
sistent with high IAS scores, malignant cells from recurrent patients
demonstrated significantly higher IRS scores than those from primary
tumors (Fig. 1G). The ITS scores were considerably lower than the IAS and
IRS scores (Fig. 1F). In conclusion, recurrent tumors exhibited higher
intraregional and interregional similarity in terms of tumor biopsies com-
pared to primary tumors, suggesting the presence of potentially shared
tumor clones that may contribute to recurrence.

Variations of the non-malignant cells in multifocal primary and
recurrent bladder cancer
To investigate the variation among non-malignant cells, we visualized all
cells by uniform manifold approximation and projection (UMAP). Inter-
estingly, while malignant and epithelial cells were primarily clustered by
sample or patient, immune and stromal cells exhibited distinct groupings
based on their cell types.We further annotated the non-malignant cells into
8major cell types, includingT-cells, B-cells, plasma cells,myeloid cells,mast
cells, endothelial cells, fibroblast, and myofibroblast cells using specific cell
type marker genes (Fig. 1B, H, and Supplementary Fig. 1F). Next, we
evaluated the interregional similarity of non-malignant cells separately in
primary and recurrent patients. Notably, mast cells displayed a remarkably
high IRS score across different tumor regions within a patient, suggesting a
consistent and stable transcriptomic status among diverse tumor regions
(Fig. 1I). In contrast, plasmacells exhibited the lowest IRS score compared to
all other cell types, indicating substantial variation among different sam-
pling regions within a single patient (Fig. 1I). These findings align with
previous studies that reported higher variations among B lymphoid cells in
different cases7. Interestingly, the observed variations were primarily
attributed to plasma cells rather than B-cells, which displayed high IRS
scores in both primary and recurrent tumors. Furthermore, we compared
the cellular compositionwithin each tumor region amongdifferent patients.
Again, distinct tumor regions within each patient exhibited similar cellular
patterns of non-malignant cells, except for plasma cells (Fig. 1J). Taken
together, our findings indicated that plasma cells exhibited higher propor-
tional and functional variation among tumor regions, while primary and
recurrent samples shared similar major immune cell types.

Distinct transcriptomicandmetabolic features ofmalignant cells
between primary and recurrent tumors
Next, we sought to investigate the transcriptomic variations of malignant
cells between primary and recurrent tumors. We characterized these cells
based on their origins and conducted a differential expressed analysis across
patients. Our functional enrichment analysis revealed that malignant cells
from primary tumors exhibited upregulated genes associated with the P53
pathway, leukocyte trans-endothelial migration, and regulation of lym-
phocyte activation (Fig. 2A). Strikingly, malignant cells in recurrent tumors
not only displayed heightened expression of genes linked to hypoxia,
apoptosis, and the cell cycle, but also exhibited elevated levels of antigen
processing and presentation genes, and interferon-gamma response path-
way.Thisfinding is consistentwith previous studies that reporteda subset of
tumor cells exhibiting an epithelial-immune dual feature in nasopharyngeal
carcinoma22,23.

Furthermore, our analysis uncovered significant enrichment of
metabolic-associated pathways in malignant cells derived from recurrent
tumors, such as glycolysis and gluconeogenesis, indicating metabolic
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alterations between primary and recurrent tumors. To validate these
metabolic changes, we estimated the metabolic activity of epithelial and
malignant cells using gene set variation analysis (GSVA)24. Consistent with
prior research, we observed that all malignant cells exhibited specific
enrichments in energy production-associated metabolic pathways, parti-
cularly oxidative phosphorylation25,26. This observation indicates an
increased energy demand to support proliferation and disease progression
(Supplementary Fig. 2A). Despite the overall upregulation of energy

production-associated pathways in malignant cells compared to normal
epithelial cells, we also detected variations in energy supply within different
tumor regions of individual patients. Specifically, our differential metabolic
activity analysis revealed that malignant cells from recurrent patients
upregulated nitrogen metabolism-associated genes, such as hypoxia-sensor
genes CA9 and CA12, which aligns with the significant enrichment of the
hypoxia pathway in these cells27,28 (Supplementary Fig. 2B–D). In summary,
our findings highlight distinct transcriptomic and metabolic features of
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Fig. 1 |Multilesional single-cell transcriptomeprofiling of primary and recurrent
bladder cancer. A Workflow of multilesional tumor tissue collection, processing,
scRNA-seq, and data analysis, Image created with BioRender.com, with permission.
BHeatmap shows the marker genes expression of all cell types.CUniformmanifold
approximation and projection (UMAP) plots of all malignant and epithelial cells,
colored by the cell type annotation.DHistogram indicating the proportion of cells in
each sample. E Hierarchical clustering of malignant cells from each tumor lesion
across all samples. F The distribution of pair-wise correlations of malignant cells

within each tumor lesion (intraregion), across tumor lesions within each patient
(interregion) and across patients (intertumor). Pearson’s correlation coefficient was
applied. Solid and dashed gray lines indicate the mean and standard deviation of all
intraregional correlation values. G Boxplot showing the correlation of malignant
cells across tumor lesions within patients.HUMAP of non-malignant cells, colored
by cell type. I Boxplot showing the correlation of each cell type cells across tumor
lesions within patients. J Histogram indicating the proportion of each cell type in
each sample.
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malignant cells in recurrent tumors. These cells demonstrate a stronger
association with hypoxia and exhibit a notable epithelial-immune dual
feature.

Recurrentmalignant cells exhibit an elevated IFN responseanda
reduced cytokine/NK response
To further explore the transcriptomic diversity of malignant cells, we con-
ducted non-negative matrix factorization (NMF) analyses on 10 different
tumors separately29,30. This analytical approach allowed us to decipher

intrinsic biological programs and mitigate batch effects among malignant
cells. Previous studies have indicated that intratumor programs could be
shared among different tumors29. Consequently, we calculated the Jaccard
index for each pair of intratumor programs, which led us to identify eight
prominent meta-programs that were consistently present across distinct
tumors (Fig. 2B). These meta-programs were characterized by the func-
tional enrichment results of selected commonly shared genes and were
labeled based on associated functions, including cell cycle, stress response,
cytokine/NK response, hypoxia, estrogen response, IFN response, andEMT
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Fig. 2 | Deciphering expression programs revealed the epithelial-immune dual
feature ofmalignant cells in recurrent tumors.ATwo-sided bar graph showing the
enriched pathways in primary and recurrent tumor-derived malignant cells.
B Hierarchical clustering of intra-tumor expression programs, defined by Non-
negative factorization (NMF), to identify the meta-programs based on the Jaccard
index. C Heatmap showing the enriched pathways for each meta-program.
D Boxplot showing the signature scores of meta-programs among malignant cells
from primary and recurrent tumors. E Boxplot showing the expression ofGATA3 in
malignant cells from primary and recurrent tumors. FVenn diagram illustrating the

shared genes between IFN response-associated genes and the upregulated gene of
recurrent tumor-derived malignant cells. G Immunofluorescence images showing
the localization of CD74 and the malignant cells marker gene CK-P in recurrent
bladder tumors. Scale bar, 0.05 mm. H Boxplot showing the expression of CD74
across epithelial andmalignant cells. I The rank of driver transcription regulators in
the CD74+ and CD74- malignant cells. The regulators are ranked by the regulatory
importance from the SCENIC result. J Boxplot showing the expression of STAT1 in
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(Fig. 2C). Encouragingly, we observed that malignant cells derived from
recurrent tumors exhibited an up-regulation of hypoxia-related genes,
aligningwith thefindings from the differential expression analysis (Fig. 2D).
Recurrent tumors also displayed higher levels of EMT, stress response, and
IFN response programs, whereas primary tumors showed significantly
higher cytokine/NK response and estrogen response programs (Fig. 2D,
Supplementary Fig. 2E, F). Interestingly, the increased IFN response and
decreased cytokine/NK response programs were observed exclusively in
malignant cells from recurrent tumors, not in normal epithelial cells
(Supplementary Fig. 2F). Given hamperT andNKcell function in recurrent
tumors, we further examined whether the recurrent tumors-derived
malignant cells could modulate cytokine/NK response by upregulated
immune inhibitors, such as the transcription factors and cytokines. As
expected, the transcription factor GATA3, inducing T cell dysfunction
independent of activation, and immunosuppressive cytokine TGFB1 sig-
nificantly up-regulated inmalignant cells from recurrent tumors compared
toprimary tumors30–32 (Fig. 2D).Altogether, these results collectively suggest
that recurrent tumors may evade immune surveillance by elevating the
levels of immune inhibitors, thereby reducing cytokine/NK response.

It has been reported that excessive and prolonged levels of IFN could
orchestrate tumor progression and immune escape in solid tumors32.
Therefore, we sought to investigate the impact of elevated IFN response on
recurrent tumor-derived malignant cells. First, we performed cross-
referencing and observed that malignant cells from recurrent tumors
exhibited intrinsic upregulation of IFN-stimulated genes, including CD74,
IFI27, IFITM3, HLA-DRA, and HLA-DRB1 (Fig. 2F). For the top differ-
entially expressed gene CD74, we further confirmed its co-expression with
malignant cell markers CK-P and CD74 in individual malignant cells using
multiplex immunohistochemistry (mIHC) (Fig. 2G, H). This finding was
consistent with previous studies indicating that IFNG enhances CD74
expression in melanoma. Moreover, we identified a positive correlation
between IFNG and CD74 expression both in single-cell and bulk RNA-seq
datasets (Supplementary Fig. 2H)33. CD74 plays a crucial role not only in
antigen presentation but also as a receptor for macrophage migration
inhibitory factor (MIF),which activates thePI3K/AKTpathway. PI3K/AKT
further degrades p53 and activates mTOR to promote tumorigenesis and
metastasis34,35. Given the oncogenic significance of CD74, we confirmed
elevated levels of PI3K/AKT in malignant cells derived from recurrent
tumors compared to primary tumors (Supplementary Fig. 2I). To further
investigate the transcription factors responsible for mediating CD74
expression in the presence of excessive IFN levels, we performed SCENIC
analyses comparingCD74+ andCD74− BLCAmalignant cells. Our analysis
revealed that STAT1 had the highest regulatory importance, consistent with
previous studies demonstrating the involvement of IFNG/STAT1 signaling
in CD74 regulation (Fig. 2I). Additionally, we observed significantly higher
expression of STAT1 in recurrent tumors (Fig. 2J). Interestingly, CD74+

malignant cells displayed enhanced energy production-associated path-
ways, such as pyruvate metabolism, fatty acid degradation, and glycolysis.
This suggests that these tumor cells are more metabolically active and may
exert a stronger influence on tumor growth (Supplementary Fig. 2J). In
conclusion, our findings suggest thatmalignant cells derived from recurrent
tumors could reduce cytokine/NK response and activate the PI3K/AKT
pathway through CD74-MIF interaction. This mechanism may contribute
to tumor escape and progression.

Enhanced immune suppression and cellular plasticity of the
recurrent TME
To gain a deeper understanding of the diverse infiltrating immune cells, we
conducted a comprehensive analysis of twomajor cell lineages: lymphocytes
and myeloid cells. In the case of lymphocytes, we meticulously addressed
any batch effects, followed by re-clustering to identify and annotate 13
distinct lymphocyte subtypes using canonical marker genes (Fig. 3A and
Supplementary Fig. 3A, B). To characterize the functional state of each cell
type, we performed enrichment analyses using cytotoxic and regulatory
signatures36. Lymphocytes expressing high levels of GZMB and GZMA,

along with increased cytotoxic scores, were annotated as CD8Teff_GAMB
andCD8Teff_GZMA, respectively. Cell types exhibiting elevated regulatory
scoreswere identified as Treg (Fig. 3B).NaïveT-cells, suchasTnaive_TCF7,
were defined by their lowest cytotoxic and regulatory scores. Interestingly,
we observed a decrease in cytotoxic scores in T-cells derived from recurrent
tumors, accompanied by an increase in regulatory and exhausted scores,
indicating a more pronounced immunosuppressive state of T-cells within
the recurrent tumor microenvironment (TME) (Fig. 3B). Proportional
analyses of different cell types revealed a consistent cellular composition
within patients across various tumor regions (Fig. 3C and Supplementary
Fig. 3C).Notably, recurrent tumor samples exhibited significant enrichment
of Treg_TNFRSF4 and T_CXCL13, both demonstrating high exhausted
scores (Supplementary Fig. 3D). Taken together, these findings strongly
suggest that recurrent tumors exhibit a more immunosuppressive TME,
characterized by reduced cytotoxic T-cell activity and an increased presence
of regulatory T-cells.

For myeloid cells, we identified 14 subtypes based on Louvain clus-
tering and expressedmarkers, encompassing four clusters formacrophages,
two formonocytes, four for dendritic cells (DCs), two formast cells, one for
neutrophils, and one for cycling cells (Fig. 3D and Supplementary Fig. 3E).
Distribution analysis revealed that cDC_LAMP3 and cDC1_CLEC9Awere
highly enriched in recurrent tumor samples, whileCAP3+ andCTSG+mast
cells were more prevalent in primary tumor samples (Fig. 3E and Supple-
mentary Fig. 3F). To describe the polarization of macrophages and
monocytes, we utilized M1 and M2 signature scores37. Intriguingly, our
observations indicated that macrophages and monocytes derived from
recurrent tumors exhibited simultaneous M1 and M2 polarization, exem-
plified by the presence of Macro_SPP1 and Mono_FCN1 (Fig. 3F). Fur-
thermore, we employed phagocytosis, angiogenesis, and myeloid-derived
suppressor cell (MDSC) signature scores to characterize theheterogeneity of
monocytes and macrophages38. Notably, Mono_FCN1 displayed an
angiogenesis and MDSC phenotype, while Macro_SPP1 exhibited the
highest M2 and angiogenesis signature scores, suggesting their potential
roles in regulating immunity as tumor-associated macrophages (Supple-
mentary Fig. 3F, TAMs). Interestingly, we observed that SPP1+ macro-
phages showed a higher propensity for interactions with lymphocytes
through SPP1, specifically involving SPP1-CD44 and SPP1-PTGER4. Pre-
vious studies have demonstrated that the interaction of SPP1-CD44 and
SPP1-PTGER4 has the potential to inhibit T-cell proliferation7,39 (Fig. 3G
and Supplementary Fig. 3G). Consistently, the elevated expression of the
signature gene ofMacro_SPP1was associatedwith poorer clinical outcomes
in public NMIBC cohort (Fig. 3H). Overall, our analyses suggest the pre-
sence of immunosuppressive tumor-associated macrophages (TAMs) in
both primary and recurrent tumors, with TAMs associated with recurrence
showing increased cellular plasticity.

IL4I1+SPP1+ macrophage promotes AHR-driven cancer cell
motility and suppresses adaptive immunity through
recruiting Tregs
Metabolic reprogramming plays a crucial role in cell adaptation and
influences the cellular statewithin theTME.Given the remarkable cellular
plasticity of myeloid cells, we investigated the metabolic activity of dif-
ferent myeloid subtypes using GSVA. Our findings revealed that Mac-
ro_SPP1 displayed the highest activity in tryptophan (Trp) metabolism
compared to other myeloid cells (Fig. 4A, Supplementary Fig. 4A). Pre-
vious studies have implicated that Trp metabolism can induce PD-L1
expression, facilitating immune evasion in human pancreatic beta cells,
indicating a potential connection between upregulated Trp metabolism
and tumor occurrence40,41. Further gene set analyses indicated a significant
upregulation of the Trp metabolic-associated enzyme IL4I1 in Mac-
ro_SPP1 and a subset of mature cDC_LAMP3 (Fig. 4B, C and Supple-
mentary Fig. 4B, C)42. To validate these findings, we performed mIHC
staining on BLCA samples and confirmed the colocalization of IL4I1 and
SPP1 in CD14+ macrophages (Fig. 4D and Supplementary Fig. 4D).
Interestingly, the expression of IL41 is enhanced in the Macro_SPP1 cells
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derived from recurrent tumors (Fig. 4E). Moreover, the co-expression of
IL4I1 and SPP1 in Macro_SPP1 cells was also observed in public kidney
renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma
(LIHC) datasets, suggesting a potential pan-cancer regulatorymechanism
involving IL4I1 and SPP1 (Supplementary Fig. 4E). While a subset of
cDC_LAMP3 also expressed IL4I1, the Trp metabolic activity in these
cells was mainly mediated by IDO1 and TDO243 (Supplementary
Fig. 4B,C).Notably, IL4I1has been reported to have a stronger association
with Aryl hydrocarbon receptor (AHR) activity compared to IDO1 and
TDO243,44. Therefore, IL4I1-mediated Trp catabolism could drive AHR
activation, promoting cancer cell motility, impairing T-cell proliferation,

and recruiting regulatory T-cells44. Ultimately, this contributes to
enhanced tumor malignancy and suppression of anti-tumor immunity.

To gain further insights into the role of IL4I1, we calculated the AHR
signature score for each malignant cell. The results revealed that malignant
cells from recurrent samples had significantly higherAHR scores compared
to their primary counterparts (Fig. 4F). This observation aligns with the
elevated expression of IL4I1 in Macro_SPP1 cells from recurrent tumors,
suggesting that IL4I1 derived from TAMs is associated with AHR-driven
tumor progression, especially in recurrent cases. Besidesmalignant cells, we
found a significant positive correlation between the proportion of Mac-
ro_SPP1 and activated Treg_TNFRSF4 (Fig. 4G). To validate this, we
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analyzed a large TCGA BLCA dataset and confirmed the association
between Macro_SPP1 and regulatory T-cell infiltration, indicating the role
of IL4I1+SPP1+macrophages inmodulating tumor immunity by recruiting
regulatory T-cells (Fig. 4H). Given the known immunosuppressive prop-
erties ofMacro_SPP1,we investigatedwhether the enrichment of regulatory
T-cells in recurrent tumor samples was primarily influenced by IL4I1 or
SPP1. Our analysis revealed that IL4I1 expression exhibited a significantly
stronger positive correlation with the level of regulatory T-cell infiltration
across different cancer types when compared to SPP1 (Supplementary
Fig. 4F). Furthermore, IL4I1 overexpression was frequently observed across
various cancer types, and heightened levels of IL4I1 were associated with
worse overall survival in publicNMIBCdataset (Supplementary Fig. 4G,H).
These findings collectively suggest that IL4I1 may promote tumor pro-
gression at a pan-cancer level. To identify potential upstream regulators of
IL4I1 expression in Macro_SPP1, we conducted NicheNet analysis and
found that IFNG and TNF, predominantly released by GZMA+ T-cells,
MS4A1+ B-cells, and CLEC9A+ dendritic cells, were highly expressed in
recurrent BLCA tumors and held the highest potential to influence the
expression of IL4I1 and SPP1 in Macro_SPP145 (Fig. 4I, J). This indicates
that cellular cross-talk plays a role in shaping the function of TAMs within

the tumormicroenvironment. In summary, our analysesunveiled that IL4I1
derived fromSPP1+macrophages drivesAHR-mediatedcancer cellmotility
while suppressing adaptive immunity, particularly in recurrent tumors.

ECM-associated RGS5+ myofibroblasts are enriched in
recurrent tumors
Stromal cells, which play a central role in the TME, exhibit high het-
erogeneity and are involved in various functions, including extracellular
matrix (ECM) remodeling, angiogenesis, immune regulation, and
antigen presentation46–48. In our study, we focused on characterizing
stromal cells and identified 11 distinct subtypes based on clustering and
marker gene expression analysis (Fig. 5A). Notably, we observed that
almost all marker genes for both pan-cancer andMIBC-specific stromal
cells were expressed in NMIBC-derived stromal cells16,47, indicating that
while stromal cells in NMIBC may not be in direct contact with
malignant cells, they are still influenced by the products of the tumor
microenvironment (Supplementary Fig. 5A, B). To explore the immune
regulation of stromal cells, we employed CellphoneDB to infer cell
communication and TIMER to estimate the regulation of stromal cells
on immune infiltration49,50. Our findings revealed that Fibro_CTHRC1,

UMAP1

U
M

A
P

2

Endo_ACKR1

Endo_EFNB2

Endo_RGCC

Endo_TOP2A

Fibro_CCL5

Fibro_CTHRC1

Fibro_CXCL1

Fibro_POSTN

MyoFibro_ACTA2 MyoFibro_MYH11

MyoFibro_RGS5

0.00

0.25

0.50

0.75

1.00

P
er

ce
nt

ag
e

Endo_ACKR1
Endo_EFNB2
Endo_RGCC
Endo_TOP2A
Fibro_CCL5
Fibro_CTHRC1
Fibro_CXCL1
Fibro_POSTN
MyoFibro_ACTA2
MyoFibro_MYH11
MyoFibro_RGS5

Recurrence Primary

Fibro_CCL5 Fibro_CTHRC1 Fibro_CXCL1 Fibro_POSTN MyoFibro_ACTA2

M
ac

ro
_C

1Q
C

M
ac

ro
_C

C
L3

M
ac

ro
_D

O
C

K
4

M
ac

ro
_S

P
P

1
M

on
o_

F
C

N
1

M
on

o_
IL

10
cD

C
1_

C
LE

C
9A

cD
C

2_
C

D
1C

cD
C

_L
A

M
P

3
pD

C
_C

LE
C

4A
M

ac
ro

_C
1Q

C
M

ac
ro

_C
C

L3
M

ac
ro

_D
O

C
K

4
M

ac
ro

_S
P

P
1

M
on

o_
F

C
N

1
M

on
o_

IL
10

cD
C

1_
C

LE
C

9A
cD

C
2_

C
D

1C
cD

C
_L

A
M

P
3

pD
C

_C
LE

C
4A

M
ac

ro
_C

1Q
C

M
ac

ro
_C

C
L3

M
ac

ro
_D

O
C

K
4

M
ac

ro
_S

P
P

1
M

on
o_

F
C

N
1

M
on

o_
IL

10
cD

C
1_

C
LE

C
9A

cD
C

2_
C

D
1C

cD
C

_L
A

M
P

3
pD

C
_C

LE
C

4A
M

ac
ro

_C
1Q

C
M

ac
ro

_C
C

L3
M

ac
ro

_D
O

C
K

4
M

ac
ro

_S
P

P
1

M
on

o_
F

C
N

1
M

on
o_

IL
10

cD
C

1_
C

LE
C

9A
cD

C
2_

C
D

1C
cD

C
_L

A
M

P
3

pD
C

_C
LE

C
4A

M
ac

ro
_C

1Q
C

M
ac

ro
_C

C
L3

M
ac

ro
_D

O
C

K
4

M
ac

ro
_S

P
P

1
M

on
o_

F
C

N
1

M
on

o_
IL

10
cD

C
1_

C
LE

C
9A

cD
C

2_
C

D
1C

cD
C

_L
A

M
P

3
pD

C
_C

LE
C

4A

MDK_LRP1

WNT5A_ANTXR1

PLXNB2_SEMA4C

EGFR_COPA

−log10(pvalue) 0 1 2 3

0.0 0.4 0.8 1.2 1.6
 mean (Molecule 1, Molecule 2)

P
04

_R
1

P
04

_R
2

P
01

_R
1

P
01

_R
2

P
05

_R
1

P
05

_R
2

P
02

_R
1

P
02

_R
2

P
03

_R
2

P
03

_R
1

0246810

-log10(qvalue)

E
nd

o_
A

C
K

R
1

F
ib

ro
_C

C
L5

E
nd

o_
T

O
P

2A
F

ib
ro

_C
T

H
R

C
1

F
ib

ro
_P

O
S

T
N

M
yo

F
ib

ro
_A

C
T

A
2

E
nd

o_
R

G
C

C
M

yo
F

ib
ro

_R
G

S
5

F
ib

ro
_C

X
C

L1
E

nd
o_

E
F

N
B

2
M

yo
F

ib
ro

_M
Y

H
11

Interferon gamma response

TNFa signaling via NFKb

KRAS signaling up

Cell adhesion molecules cams

Antigen processing and presentation

Leukocyte transendothelial migration

Epithelial mesenchymal transition

Myogenesis

Coagulation

Angiogenesis

Ecm receptor interaction

Inflammatory response

IL2 STAT5 signaling

IL6 JAK STAT3 signaling

Apoptosis

Hypoxia

G2M checkpoint

E2F targets

P53 pathway

*

Fibro_CTHRC1
Fibro_CTHRC1
Fibro_POSTN
Fibro_POSTN
Fibro_CXCL1
Fibro_CXCL1
MyoFibro_MYH11
MyoFibro_MYH11
MyoFibro_ACTA2
MyoFibro_RGS5
MyoFibro_ACTA2
MyoFibro_RGS5
Endo_ACKR1
Endo_ACKR1
Endo_RGCC
Endo_TOP2A
Endo_TOP2A
Endo_RGCC
Endo_EFNB2
Endo_EFNB2
Fibro_CCL5
Fibro_CCL5

−
0.

50

0.
51

Signature score

A B

C

D

E
F

RecurrenceSource

0.0

0.2

0.4

0.6

0.8

−0.4 0.0 0.4 0.8

Fibro_CCL5

C
D

8+
 T

ce
ll

Fibro_CCL5

C
D

4+
T

ce
ll

R=0.489
P_value=8.11e-26

0.0

0.2

0.4

0.6

−0.4 0.0 0.4 0.8

R= 0.523
P_value=5.12e-30

Fibro_CCL5

N
eu

tr
op

hi
l

0.1

0.2

0.3

0.4

−0.4 0.0 0.4 0.8

R= 0.762
P_value= 1.69e-78

Primary

E
C

M

A
nt

ig
en

-p
re

se
nt

in
g

T
ip

Im
m

un
e 

re
gu

la
to

ry

A
ng

io
ge

ne
si

s

Fig. 5 | Stromal cell heterogeneity of primary and recurrent bladder tumors.
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Fibro_CXCL1, and Fibro_POSTN were more likely to interact with
SPP1+ macrophages through MDK-LRP1 and WNT5A-ANTXR1.
These interactions are known to promote immunosuppressive macro-
phage differentiation and M2 polarization, indicating that stromal cells
can modulate the functional states of macrophages51 (Fig. 5B). Fur-
thermore, we observed a significant positive correlation between the
signature score of Fibro_CCL5 and the estimated proportion of CD8+

T cells,CD4+T cells, and neutrophils in TCGA-BLCAdatasets (Fig. 5C).
Pathway enrichment analysis and functional signature scores revealed
that CCL5+ fibroblasts were not only involved in antigen processing and
presentation in cells from recurrent tumors but also contributed to
leukocyte transendothelial migration. These findings suggested their
potential role in recruiting immune cells and consistent with previous
studies reported that antigen-presenting associated fibroblast can
facilitate immune cell infiltration (Fig. 5D, E)52. Importantly, several
stromal cell types, including Fibro_CTHRC1, Fibro_POSTN, Myfi-
bro_RGS5, and Myfibro_ACTA2 were found to be highly enriched in
functions related to EMT and ECM remodeling. This indicates that
besides their immune regulation roles, these stromal cells actively par-
ticipate in remodeling the ECM surrounding tumors. Next, we examined
the distribution of stromal cell subtypes and observed the proportions of
these cell types varied across different samples, but showed more con-
sistency within regions of the same patient (Fig. 5F). Specifically, ECM-
associatedRGS5+myofibroblasts were found to be significantly enriched
in recurrent tumors, while ECM-associated fibroblasts like Fibro_-
POSTN and Fibro_CTHRC1 tended to be slightly more enriched in
primary tumor samples (Supplementary Fig. 5C). In conclusion, our
study highlights the presence of diverse ECM-associated fibroblast
subtypes in recurrent tumors and primary tumors and underscores the
critical role of stromal cells in modulating tumor immunity by influ-
encing immune cell infiltration and regulatingmacrophage polarization.

Higher consistency of interregional communication network in
recurrent tumors
In light of the marked transcriptomic heterogeneity between primary and
recurrent tumor lesions described earlier, we put forth the hypothesis that
each tumor lesion might harbor distinct molecular communication net-
works between malignant and non-malignant cells. To comprehensively
investigate these intratumoral communication networks, we inferred
ligand-receptor interactions among all cell types within each sample. Sub-
sequently, we integrated the interaction results of all samples to compare the
differences between tumor lesions in primary and recurrent tumors.
Notably, our analysis unveiled that recurrent tumors exhibited fewer but
more consistent intercellular interactions compared to primary tumors.
This implies that the tumor lesion-specific communication networks are
more conserved in recurrent tumor patients (Fig. 6A, B). These findings
alignwith the higher intra-regional similarity observed in recurrent tumors,
providing support for the notion that malignant cells play a pivotal role in
shaping the unique communication network7. Furthermore,we endeavored
to identify ligand-receptor pairs specific to their cellular sources and
observed enrichment in the EGF, CSPG4, CD40, and TENASCIN signaling
pathways in recurrent tumor samples (Fig. 6C, D, Supplementary Fig. 6A).
Notably, we discovered that the interaction between HBEGF and EGFR
from theEGFpathway,whichhas been reported to drive carcinogenesis and
tumor growth in lung cancer and gliomas, was exclusively enriched in
malignant cells derived from recurrent patients53–55. Hence, it suggests the
involvement of various immune and stromal cell types in stimulating
growth factors within recurrent tumors to support the growth of malignant
cells (Fig. 6E and Supplementary Fig. 6B). Additionally, myofibroblast cells,
particularly those derived from recurrent tumors, released CSPG4, which
could promote malignant cell growth and stimulate endothelial cell
migration by modulating integrin function in the TME (Fig. 6E and Sup-
plementary Fig. 6C)54. Taken together, our results indicate that the recurrent
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tumor may possess relatively stable communication networks among dis-
tinct regions compared to primary tumors.Moreover, theTME in recurrent
tumors appears to rely more on growth factors to drive tumor progression.

Discussion
The presence of molecular changes in multi-regional tumors, both within
individual patients and across different patients, contributes to a con-
siderable level of heterogeneity compared to single-regional tumors. Fur-
thermore, although advances in surveillance and treatment strategies have
improved overall survival rates, the clinical outcome for multifocal BLCA
patients remains low, particularly due to its early recurrence. Recent studies
have focused on analyzing tumor heterogeneity, the interaction between
malignant cells and fibroblasts, and the response to immunotherapy using
techniques such as scRNA-seq and spatial transcriptome datasets in pri-
mary and recurrent BLCA tumors. However, a comprehensive under-
standing of the heterogeneity among tumor lesions within a single patient
and the differences in the TME between primary and recurrent multifocal
tumors is still lacking. In this study, we present a comprehensive single-cell
level atlas to characterize the TME in primary and recurrent multi-
focal BLCA.

Our analyses reveal significant differences in malignant cells, immune
cells, and the stromal context between recurrent and primary tumors. This
thorough understanding of the interregional or intraregional dynamics of
tumor heterogeneity not only provides valuable insights but also offers
potential novel targeting strategies for the treatment of recurrent tumors.

Our analyses revealed that recurrent and primary tumors exhibited a
smaller degree of interregional heterogeneity compared to intertumoral
heterogeneity. Additionally, malignant cells derived from recurrent tumors
showed even higher interregional similarities, suggesting that multifocal
tumors in recurrent cases may originate from a common set of “seed” cells.
Furthermore, we observed that recurrent tumor-derived cells demonstrated
more consistent communication networks within each region. Upon
functional analysis of malignant cells from recurrent tumors, we observed a
suppressed cytokine and NK cell response, along with an elevated expres-
sion of IFN-stimulated genes, includingCD74,HLA-DRA, andHLA-DRB1,
which are involved in antigen presentation. Of particular interest, the
expression of MHC II-associated genes, typically associated with canonical
antigen-presenting cells, was detected in malignant cells, indicating their
dual epithelial-immune nature. Previous studies have reported the expres-
sion ofMHC II-associated genes in epithelial cells of the respiratory tract or
skin, as well as in malignant cells from nasopharyngeal carcinoma, mela-
noma, and colon cancer. However, the impact of MHC II expression on
patient survival and response to immunotherapy remains controversial
across different cancer type23. For instance, tumor-specific MHC II
expression has been linked to favorable outcomes in melanoma, colon
cancer, and breast cancer, but correlated with shorter overall survival in
nasopharyngeal cancer patients. Our findings suggest that the increased
expression of CD74 in malignant cells may activate the oncogenic PI3K/
AKT pathways, contributing to tumor progression in recurrent bladder
tumors. Furthermore, our investigation into the regulatory mechanisms of
CD74 revealed its upstream regulator STAT1, a key mediator of IFN sig-
naling, in malignant cells from recurrent tumors. Considering the well-
established role of the IFNG signaling pathway as a critical immune sig-
naling pathway in bladder cancer, mediating response to immunotherapy
such as Bacillus CalmetteGuérin (BCG) and immune checkpoint inhibitors
(ICI)4,5, we hypothesize that CD74 could serve as a promising therapeutic
target for combined therapy in the treatment of recurrent bladder tumors.

Macrophages can adopt distinct polarization states dictated by the
TME, either promoting or suppressing tumor growth. In our study, we
observed that SPP1+macrophages derived from recurrent tumors exhibited
increased activity in tryptophan metabolism, which was attributed to the
upregulation of IL4I1 compared to their counterparts in primary tumors.
IL4I1, a secreted enzyme, plays a role in catalyzing the conversion of
tryptophan42. This metabolic pathway activation can activate the AHR,
leading to tumor progression and the establishment of immune-suppressive

microenvironments. Notably, we also observed a significant elevation in
IL4I1 expression inmalignant cells derived from recurrent tumors, resulting
in a pronounced increase in the AHR signature score. This, in turn, pro-
motes tumor progression by enhancing cancer cell motility. Furthermore,
our findings revealed a positive correlation between SPP1+ macrophage
proportion and regulatory T-cells, indicating their potential to stimulate
angiogenesis, foster tumor progression, and suppress adaptive immunity
through their associatedmetabolic activities. Considering the critical role of
tryptophan metabolism in cancer therapy, our discovery provides valuable
insights into the potential development of novel pharmacological targets for
the treatment of BLCA.

Different fromanalyses of other cancer types,NMIBC includes stromal
cells that may not directly connect with adjacent tumor cells or other TME
cells, such as those in the Ta stage. According to the American Joint
Committee on Cancer (AJCC) staging system, NMIBC is classified into Ta
and T1 stages. In T1 stage bladder cancer, the tumor invades the lamina
propria, a region primarily consisting of loose connective tissue with
numerous elastic fibers, stromal cells, and delicate smooth muscle bundles.
While the majority of our collected samples were from patients at the
T1 stage, we also included patients at the Ta stage. Importantly, almost all
stromal cell marker genes associated with pan-cancer and bladder cancer
were highly expressed in our stromal cells at both T1 and Ta stages. These
findings suggest that stromal cells, either directly or indirectly, interact with
malignant cells and other TME components through cytokine signaling,
indicating a complex interplay within the tumor microenvironment.

In conclusion, our study presents a valuable contribution by providing
comprehensive insights into the heterogeneity and variation of the TME in
multi-tumor BLCA lesions from both primary and recurrent tumors. The
distinctive features observed in recurrent tumors not only offer unique
therapeutic targets but also provide indications of the co-evolution between
malignant cells and the TME. Despite the relatively small sample size
resulting fromsampling limitations, ourfindingsoffer an initial glimpse into
the remarkable differences between primary and recurrent tumors, with
potential implications for studying other cancer types in the future.

Methods
Sample collection and processing
A total of five urothelial cancer patients from Shanghai Tenth People’s
Hospital were enrolled in this study. All patients received either CT orMRI
scanning preoperatively and were clinically diagnosed asmulti-region non-
muscle invasive urothelial tract cancer. Among them, three patients were
primary and two were recurrent urothelial cancer. Transurethral resection
was performed as the golden standard for bladder cancer patients. For one
patient (P03) with concurrent bladder and ureter cancer, a radical
nephroureterectomy was also performed to remove the ureter cancer.
Samples from two distinct parts of the urothelial tract were harvested for
eachpatient, for example, the right and left bladderwall, ureter, and bladder.
Each sample was measured about 5mm diameter in size before single-cell
library preparation. All patients were pathologically confirmed as non-
muscle-invasive urothelial carcinoma. Sample collection was performed
withwritten informed consent frompatients.All ethical regulations relevant
to human research participants were followed.

Tissue dissociation and preparation
The fresh tissues were stored in the sCelLiveTM Tissue Preservation Solu-
tion (Singleron Bio Com, Nanjing, China) on ice after the surgery within
30min. The specimens were washed with Hanks Balanced Salt Solution
(HBSS) 3 times and then digested with 2ml sCelLiveTM Tissue Dissocia-
tion Solution (Singleron) by Singleron PythoN™ Automated Tissue Dis-
sociation System (Singleron) at 37 °C for 15min. Afterward, the
GEXSCOPE red blood cell lysis buffer (Singleron, 2 ml)was added, and cells
were incubated at 25 °C for another 10min to remove red blood cells. The
solution was then centrifuged at 500 g for 5min and suspended softly with
PBS. Finally, the samples were stained with trypan blue (Sigma, United
States) and the cellular viability was evaluated microscopically.

https://doi.org/10.1038/s42003-024-07343-7 Article

Communications Biology |          (2024) 7:1659 10

www.nature.com/commsbio


Library preparation and scRNA-seq
Single-cell suspensions (1 × 105 cells/ml) with PBS (HyClone) were loaded
into microfluidic devices using the Singleron Matrix Single Cell Processing
System (Singleron). Subsequently, the scRNA-seq librarieswere constructed
according to the protocol of the GEXSCOPE Single Cell RNA Library Kits
(Singleron55). Individual libraries were diluted to 4 nM and pooled for
sequencing. At last, pools were sequenced on IlluminaHiSeq Xwith 150 bp
paired-end reads.

Immunofluorescence staining
Protein expression was evaluated by immunofluorescence staining (IF) of
bladder cancer tissue harvested from patients. Briefly, 5-μm paraffin-
embedded cross-sections of tissues were fixed with 4% paraformaldehyde,
permeabilized with 0.1% Triton-100, and blocked with 5% bovine serum
albumin (BSA). Subsequently, tissues were incubated with anti-CD74 (1:
500, Proteintech) and anti-pan-keratin (1:200, CST) or anti-SPP1(1:400,
Proteintech), anti-IL4I1(1:400, Proteintech) and anti-CD14 (1:1000, Pro-
teintech) overnight at 4 °C. Then, the cells were treated with the corre-
sponding secondary antibody after washing three times. DAPI (Beyotime)
staining was used for nuclear localization. Images were captured with a
confocal microscope (Leica Microsystems, Mannheim, Germany).

Single-cell RNA-Seq data processing
The CeleScope pipeline from Singleron was employed to process the fastq
file. The data process encompassed filtering out low-quality reads, aligning
reads to the GRCh38 reference genome, assigning cell barcodes, and
extracting the unique molecular identifier (UMI) barcode. After the initial
processing, we employed Scrublet to remove cells likely to be doublets56.
Scrubletwas applied to each sequencing library, targeting potential doublets
with an expected doublet rate of 6%. Then, the output expression matrix of
each sample was combined byMAESTRO57. Next, we imported themerged
count matrix into the Seurat toolkit to filter genes detected in fewer than 10
cells, as well as cells with fewer than 500 genes or exceeding 15% mito-
chondrial gene counts58. The raw UMI counts were normalized by the total
counts per cell (library size) and followed by scaling to a factor of 106 and
logarithmic transformation.

Dimension reduction and cell clustering for scRNA-seq data
To perform dimension reduction and unsupervised clustering on scRNA-
seq data, we followed the Seurat standard workflow. The top 3000 highly
variable genes (HVGs) were selected based on their average expression and
dispersion level using the FindVariableGenes function. To reduce noise, we
employed the normalized and scaled HVGs’ expression profiles to do
principal component analysis (PCA). From a total of 75 components, we
retained the top 50 components for further use for non-linear dimension
reduction, resulting in the generation of the Uniform Manifold Approx-
imation and Projection (UMAP) plot for visualization. Then, the Seurat
function “FindClusters”wasused to cluster cellswith a resolutionparameter
set to 1.0. Additionally, we calculated differentially expressed genes for each
cluster using the FindAllMarkers function. Next, we annotated each cluster
based on the expression of canonical marker genes, such as EPCAM and
KRT14 for epithelial cells, PECAM1 and VWF for endothelial cells, and
MS4A1 and CD79A for B-cells.

To identify malignant cells, we leveraged the CopyKat R package to
estimate the degree of clonal large-scale chromosomal copy number var-
iations (CNV) in each cell within each sample59. According to the CNV
clusters result, we divided all epithelial cells into malignant cells and epi-
thelial cells. From the distributionof cell type in theUMAP,weobserved the
cells were clustering according to the cell types, except for epithelial cells and
malignant cells, in which cells were clustered according to the samples
instead of cell types (Supplementary Fig. 1D). To enhance the visualization
of cell type distributions, we partitioned the cells into two groups: one
comprising epithelial and malignant cells and the other encompassing all
other cell types. Subsequently, we repeated the dimensionality reduction,

graph clustering, andUMAP visualization steps separately for each of these
two cell groups.

Deciphering intratumor expression programs and meta-
programs of BLCA
To investigate the intratumor heterogeneity and capture the biology var-
iation to the full extent, we employed a non-negative factorization (NMF)
algorithm to identify underlying intratumor expression programs60. For
each sample, the normalized expression matrix of malignant cells was
subjected to NMF analysis, resulting in the extraction of twelve putative
programs. Then, for each program, we ordered the features by weight and
selected the top 30 features to represent the programs. To evaluate program
similarity, we calculated the average similarity (Jaccard index) between each
program pair and leveraged hierarchical clustering based on similarity to
identify the recurring programs, which were subsequently termed “meta-
programs”. Finally, we named the meta-program based on their functional
enrichment result.

Batch effect correction
At the major cell type levels, we observed cells, except for malignant and
epithelial cells, were clustering according to their cell types. For the malig-
nant and epithelial cells, the clustering pattern was influenced by a com-
bination of batch effects and the inherent heterogeneity of malignant cell
populations. Consequently, we employed canonical correlation analysis
(CCA) to correct batch effects and assess the proportion at the major cell
type level. To keep the biology variationwhilemitigating the batch effect, we
used NMF to elucidate the expression program within samples.

Next, to investigate the function and state of tumormicroenvironment
cells, we categorized cells into three major-cell lineages: lymphoid cells
(including T-cells, B-cells, and plasma cells), myeloid cells (encompassing
monocytes, macrophages, and, mast cells), and stromal cells (comprising
endothelial cells, fibroblasts, and myofibroblasts). For each major cell line-
age,we repeated the dimensionality reduction, graph clustering, andUMAP
visualization. Notably, cells from the same samples and patients tend to
cluster together, indicating the clustering results were influenced by the
batch effects (Supplementary Fig. 2A). To rectify this issue, for each major
lineage, we employed CCA from the Seurat package to eliminate the batch
effect. Subsequently, all downstream analyses were conducted based on the
batch-corrected results, ensuring not confounded by technical noise.

Metabolic activity
From theKyotoEncyclopedia ofGenes andGenomes (KEGG)database, we
collected the metabolic pathways, including 85 pathways and 1566 genes
grouped into 11 categories based on KEGG classifications61. Due to the
scRNA-seq data with the high drop-out rate, we first employ the Markov
Affinity-based Graph Imputation of Cells (MAGIC)method to imputation
expression profiles, aiming to recover the missed expression values for
enzymes associated with metabolism62. To ensure the accurate representa-
tion of metabolic enzyme expression, we accounted for interdependencies
among enzymes involved in the same or separate reactions. Then, we used
the Gene SetVariationAnalysis (GSVA) to quantify themetabolic activities
of each metabolic pathway. Differential pathway activation within each
subtype was identified through Wilcoxon rank sum tests, comparing the
specific subtype against other cell types within the same lineage.

Function analysis
Pathway enrichment analysis: Todepict the functional role of gene sets, such
as the gene list derived from the NMF programs and the cell type-specific
up-regulated genes, we collected the cancer hallmark gene sets and KEGG
pathways from the Molecular Signatures Database (MSigDB v6.1)48. Then,
the hypergeometric test from the clusterProfiler package was used to esti-
mate the overrepresented of interested gene sets in known pathways63.
Significantly enriched pathways were defined as those exhibiting a log-fold-
change > 0.05 and an adjusted P-value < 0.01 based on the query gene set.

https://doi.org/10.1038/s42003-024-07343-7 Article

Communications Biology |          (2024) 7:1659 11

www.nature.com/commsbio


Scoring cell types by using function-associated signature genes: To
describe the functional diversity of cell types, we collected the signature gene
lists from thepreviously published studies (Table S2). ForTandNKcells,we
used theAddModuleScore functionwithin Seurat to compute the cytotoxic,
exhausted, and regulatory scores for each cell, thus characterizing the
functional states across different regions and validating subtype annota-
tions. Additionally, we assessed the functional attributes of monocyte and
macrophage cells by evaluating M1/M2 polarization, angiogenesis, phago-
cytosis, and pro-/anti-inflammatory capabilities.

Cell–cell interaction analysis
To analyze cell-cell communication, we employed CellPhoneDB to infer
interactions based on the expression of known ligand-receptor pairs50.
CellPhoneDBwas used to predict the potential interaction strength between
cell types based on the expression of ligand-receptor pairs. The significance
of ligand-receptor interactions between two cell types was calculated
through permutation tests. Ligand-receptor pairs exhibiting statistically
significant interactions (P-value < 0.05) were extracted. To delineate inter-
actions specific to primary or recurrent tumors, we followed the standard
CellChat workflow with default parameters. Then, we merged the interac-
tion results from primary and recurrent tumors using the mergeCellChat
function, enabling us to visualize the number and strength of inferred
interactions for each source (Fig. 6A). Utilizing the merged Cellchat object,
we further examined and visualized shared and source-specific signaling
patterns between any two sources using the netAnalysis_signaling-
Changes_scatter function (Fig. 6C).

Survival analysis
To evaluate the clinical effect of interest cell types or NMF-derived pro-
grams, we collected and downloaded the bladder cancer expression and
clinical cohort from public NMIBC dataset. For each NMF-derived intra-
tumor meta-program, we selected the genes that appear in more than half
the number of programs and performed univariable Cox proportional
hazards regression to associate the meta-program with overall survival. A
hazard ratio higher than one means an increased mortality risk, while a
hazard ratio lower than one suggests a decreased mortality risk. For the
tumor microenvironment cells, we directly used the top 50 upregulated
genes to represent the cell type and calculated the cell type signature score by
gene sat variation analysis (GSVA) in NMIBC patients. Patients were then
stratified into high and low groups based on the median values of these
signature scores. Kaplan–Meier survival curves were plotted to show the
differences in survival time, with the statistical significance determined
using log-rank p-values reported byCox regressionmodels implemented in
the R package ‘survival’.

Gene regulatory analysis for scRNA-seq data
To identify potential transcription factors (TFs) inducing the CD74
expression on malignant cells, we employed LISA, which constructs an
epigenetic model and utilizes histone mark ChIP-seq data and chromatin
accessibilityprofiles62. Theup-regulated genesofCD74positive andnegative
cells were imported into LISAwith default parameters to identify the topTF
candidates (Fig. 2L). NicheNet, a powerful tool for predicting ligands that
drive transcriptomic change in target cell types, was used to identify
potential ligands responsible for inducing IL4I1 expression in SPP1+ mac-
rophages. Highly expressed genes in SPP1+macrophagewith log2FC > 0.25
and adjusted P-value < 0.05 were used as the input, with all macrophage
expressed genes serving as background genes. The ligand-receptor inter-
actions were narrowed down by the expression profile of target cells and
sender cells. Then, the function predict_ligand_activities from the R pack-
age “nichenetr” was used to predict and rank the potential ligands, and the
top potential ligands were visualized.

Statistics and reproducibility
Statistical analysis and visualization were conducted using R. The statistical
methods employed for each analysis are explained in the text and figure

legends. Statistical significance is denoted by specific symbols: p-value < 0.1,
*p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001.

Graphs were created using various R packages, including ggplot2
(version 3.4.3), ggpubr (version 0.6.0), ggsci (version 3.0.0), ggrepel (version
0.9.3), Seurat (version 4.3.0.1), pheatmap (version 1.0.12), VennDiagram
(version 1.7.3), nichenetr (version 1.0.0), and CellChat (version 1.1.3). Each
boxplot displays the 25% (lower hinge), 50% (median), and 75% (upper
hinge) quantiles, with the lower and upper whiskers representing the
smallest and largest observations that are greater than or equal to the lower
hingeminus 1.5 times the interquartile range (IQR) and less thanor equal to
theupper hingeplus 1.5 times the IQR, respectively, as definedby thedefault
settings in the geom_boxplot function of ggplot2.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Original data were deposited at the China National Center for Bioinfor-
mation (HRA005670). The scRNA-seq count matrix can be obtained from
the Gene Expression Omnibus under accession number GSE277524. The
sourcedataunderlying the graphs in themainandSupplementaryFigs. have
been uploaded in accordance with the journal’s requirements (Supple-
mentary Data 1 and 2). Any remaining information can be obtained from
the corresponding author upon reasonable request.

Code availability
Code related to the analyses in this study can be found onGitHub at https://
github.com/yahan9416/PvR_MultiRegion_BLCA. All analyses were con-
ducted using R version 4.0.5 and Python version 3.8.10.
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