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Abstract
Motivation: The burgeoning generation of single-cell or spatial multiomic data allows for the characterization of 
gene regulation networks (GRNs) at an unprecedented resolution. However, the accurate reconstruction of GRNs 
from sparse and noisy single-cell or spatial multiomic data remains challenging. 
Results: Here, we present SCRIPro, a comprehensive computational framework that robustly infers GRNs for 
both single-cell and spatial multi-omics data. SCRIPro first improves sample coverage through a density 
clustering approach based on multiomic and spatial similarities. Additionally, SCRIPro scans transcriptional 
regulator (TR) importance by performing chromatin reconstruction and in silico deletion analyses using a 
comprehensive reference covering 1,292 human and 994 mouse TRs. Finally, SCRIPro combines TR-target 
importance scores derived from multiomic data with TR-target expression levels to ensure precise GRN 
reconstruction. We benchmarked SCRIPro on various datasets, including single-cell multiomic data from human 
B-cell lymphoma, mouse hair follicle development, Stereo-seq of mouse embryos, and Spatial-ATAC-RNA from 
mouse brain. SCRIPro outperforms existing motif-based methods and accurately reconstructs cell type-specific, 
stage-specific, and region-specific GRNs. Overall, SCRIPro emerges as a streamlined and fast method capable 
of reconstructing TR activities and GRNs for both single-cell and spatial multi-omic data. 

Availability: SCRIPro is available at https://github.com/wanglabtongji/SCRIPro.
Contact: 08chenfeiwang@tongji.edu.cn 
Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction 
Transcription regulators (TR), including transcription factors (TF) and 
chromatin regulators (CR), play a crucial role in gene regulation by 
influencing transcription rates through mechanisms like recruiting 
transcriptional initiating complexes and modulating chromatin 
accessibility(Buenrostro, et al., 2015). TRs form complex gene 
regulation networks (GRNs) with their target genes, also known as 
regulons, which are highly dynamic in different cellular contexts and 
serve as the foundation for various biological processes. Traditional 
methods for inferring GRNs, such as GENIE3(Huynh-Thu, et al., 2010), 
LISA(Qin, et al., 2020), GRNBoost2(Moerman, et al., 2019), 
TIGRESS(Haury, et al., 2012), ppcor(Kim, 2015), and 
NIMEFI(Ruyssinck, et al., 2014), were primarily designed for bulk 
samples from mixed cell type tissues. However, these approaches are 
limited in their ability to accurately capture the regulatory programs 
operating in different cell types and states. With the advent of single-cell 
technologies, there has been a surge in the development of methods for 
inferring GRNs from single-cell transcriptome or epigenome data, 
including SCENIC(Aibar, et al., 2017), PIDC(Chan, et al., 2017), 
SCODE(Matsumoto, et al., 2017), SINCERITIES(Papili Gao, et al., 
2018), chromVAR(Schep, et al., 2017), and SCRIP(Dong, et al., 2022).

However, methods that solely focus on single-cell transcriptome for 
predictions not only neglect the genuine chromatin accessibility state but 
also fail to achieve single-cell resolution in GRN predictions, only 
attaining a cluster level. Additionally, many of these methods heavily rely 
on motif references to identify potential targets, which results in the loss 
of the cell type specificity and cannot robustly predict TR activity without 
motifs, particularly for chromatin regulators. To address these limitations, 
we previously developed SCRIP(Dong, et al., 2022), a method that 
reconstructs single-cell TR activity and GRNs from scATAC-seq data by 
integrating extensive collections of TR ChIP-seq and motif references. 
Nonetheless, SCRIP’s effectiveness is influenced by the universality and 
the quality of scATAC-seq data. Recent advancements in single-cell 
multi-omics data have led to the development of new tools for predicting 
TR activity. For example, tools such as FigR(Kartha, et al., 2022), 
GRaNIE(Kamal, et al., 2023), DIRECT-NET(Zhang, et al., 2022) and 
GLUE(Cao and Gao, 2022) utilize paired or integrated multiome data as 
inputs and employ linear/non-linear regression methods to construct gene 
regulatory networks. Other tools, like CellOracle(Kamimoto, et al., 
2023), offer pre-built GRNs or the ability to create custom-defined GRNs 
using scATAC-seq data. Meanwhile, tools like MICA(Alanis-Lobato, et 
al., 2024) use bulk ATAC-seq to identify potential TR binding sites, 
applying this landscape to refine single-cell transcriptomic data (Badia, 
et al., 2023). However, it is worth noting that the aforementioned methods 
still heavily depend on the motif information, and further exploration is 
required to enhance their accuracy and coverage.

The flourishing development of spatial omics enables precise analysis 
of cellular structures within complex tissues and the spatial interactions 
between cells. Techniques such as Stereo-seq(Chen, et al., 2022) and 
STARmap plus(Shi, et al., 2023), have achieved single-cell-level 
resolution. These methods have significantly enhanced our understanding 
of gene regulation in specific microenvironments, providing valuable 
insights into crosstalk between microenvironment interactions and 
intracellular GRNs. However, most existing tools for predicting TR 

activity do not consider cellular spatial location. They overlook the 
impact in expression similarity of different cells or spots within the same 
microenvironment, leading to inaccurate TR predictions based on spatial 
transcriptomics data. Furthermore, the emergence of spatial multi-omics 
technologies, such as spatial ATAC-RNA-seq(Zhang, et al., 2023), 
provides paired chromatin accessibility states with gene expression. This 
presents an opportunity for accurate TR activity and GRN prediction 
using spatial multiomic information.
In this study, we have developed SCRIPro, a computational framework 
designed to predict TR activity and reconstruct TR-centered GRNs for 
both single-cell and spatial multiomic data. SCRIPro addresses the 
challenge of sparse single-cell or spatial multiomic signals by employing 
a density clustering approach that considers either expression or spatial 
similarities. Additionally, SCRIPro leverages a comprehensive TR 
reference compiled from TR ChIP-seq peaks obtained from Cistrome 
DB(Zheng, et al., 2019), along with motifs for 1,252 human TRs and 994 
mouse TRs. Finally, SCRIPro combines TR-target importance from 
epigenomic data with TR-target expression from transcriptomic data to 
construct the GRNs. We demonstrate the robustness and versatility of 
SCRIPro by applying it to various datasets, including human B-cell 
lymphoma, mouse hair follicle development single-cell multi-ome data, 
mouse embryo Stereo-seq datasets at consecutive developmental time 
points, and P22 mouse brain Spatial-ATAC-RNA data. The results 
showcase the superior performance and utility of SCRIPro in diverse 
biological contexts.

2 Methods
Overview of the SCRIPro Method 
To decrease computational requirements and to alleviate the impact of 
dropout events inherent in single-cell sequencing data, as well as to 
improve the stability of the inferred GRNs, we adopted a divide-and-
conquer approach. SCRIPro begins by constructing SuperCells(Littman, 
et al., 2023), which are aggregates of gene expression profiles from 
clusters of individual cells exhibiting similar transcriptional activity. 
Following this initial step, SCRIPro identify a set of marker genes for 
each SuperCell. These marker genes serve as representative features of 
their respective SuperCells and are subsequently utilized as inputs for 
the LISA(Qin, et al., 2020) framework. Within LISA, SCRIPro 
implement ISD analyses to assess the effects of transcriptional regulator 
(TR) perturbations on the expression of these marker genes. The 
outcome of this process is a GRN constructed at the SuperCell level, 
which provides a higher-order representation of the regulatory landscape 
across the pooled cellular subpopulations.
In SCRIPro, for the transcriptomic-only data, we will use similar 
strategies from LISA to reconstruct the chromatin landscapes from bulk 
DNase/H3K27ac reference. For epigenomic-only data, we will use 
SCRIP to infer potential regulators. For multi-omics data, we will 
perform alignment and use matched or paired epigenome datasets as 
chromatin landscape. Besides, SCRIPro considers spatial adjacency 
when generating SuperCells. We believe that with these features, 
SCRIPro could provide a robust and flexible solution for GRN inference 
supporting different single-cell and spatial modalities.

Reference Dataset 
ChIP-seq collection We employed the identical ChIP-seq datasets for 
SCRIP, which were sourced from the Cistrome Data Browser(Zheng, et 
al., 2019). Following a meticulous reorganization and refinement of 
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annotations pertaining to factors, cell types, and tissues, we applied 
stringent filtering criteria: a median quality score for raw sequences 
exceeding 25, a uniquely mapped reads proportion surpassing 50%, a 
PCR Bottleneck Coefficient (PBC) greater than 0.8, an enrichment of 
peaks by a minimum of 10-fold in quantities exceeding 100, a Fraction 
of Reads in Peaks (FRiP) above 0.01, and an overlap of the top 5000 
peaks with joint DNase I hypersensitive sites (DHS) exceeding 70%. 
We preserved only those peaks demonstrating a minimum 5-fold 
enrichment within each dataset. Datasets comprising fewer than 1000 
peaks were subsequently excluded. After this filtration process, we 
amassed a total of 2314 human and 1920 mouse TR ChIP-seq datasets, 
encompassing 671 and 440 TRs, respectively.
Motif collection In an effort to enhance the representation of 
transcription factors, we also synthesized pseudo-peaks data by 
conducting motif scanning. We procured the transcription factor 
position weight matrix (PWM) motifs for both human and mouse, 
amalgamated and transformed the data formats, and subsequently 
utilized the HOMER(Heinz, et al., 2010) software to scan the genome 
for motif-associated genomic intervals. We juxtaposed the scanning 
outcomes with the Encyclopedia of DNA Elements (ENCODE)(2012) 
candidate cis-regulatory elements (ccREs) and the Cistrome Union DHS 
compilation, excluded any intersections with known blacklisted regions, 
and augmented the length of each motif locus to 340 base pairs to 
facilitate comparison with the ChIP-seq datasets. By imposing a filter 
based on the P-value, we retained the top 25,000 binding sites, 
ultimately yielding 916 human and 816 mouse pseudo-peaks derived 
from motif scanning.
Synthetic reference dataset Subsequently, we integrated these 
meticulously curated SCRIPro datasets into the LISA framework, 
generating reference HDF5 (Hierarchical Data Format version 5) files 
for both human and mouse datasets, which comprised the count of 
ChIP-seq peaks and the metadata associated with the datasets. In 
summation, the constructed human TR index encompasses 1252 TRs, 
while the mouse TR index includes 997 TRs.

Regulatory potential model
To assess the influence of transcriptional regulators on their target 
genes, we conducted a detailed analysis of ChIP-seq datasets contained 
in HDF5 files using the Regulatory Potential (RP) model(Wang, et al., 
2020). The computational formula for RP, adhering to the SCRIP 
methodology, is as follows:

𝑆𝑔 =
𝑛

𝑖=1
2―𝑑𝑖

𝑑0(1)

In this equation, n denotes the count of TR binding sites proximal to the 
TSS of gene g, while 𝑑𝑖 signifies the distance from the i-th peak's 
center to the TSS. For TRs exhibiting more than 20% of peaks in the 
promoter region, they are categorized as promoter-centric TRs, and the 
half-decay distance 𝑑0 is set at 1 kb. In contrast, TRs with fewer 
promoter-localized peaks are classified as enhancer-centric, with their 
half-decay distance established at 10 kb. To enhance computational 
efficiency, the analysis was restricted to genes located within a half-
maximal regulatory range (half-decay distance) of 15 𝑑0, as peak 
scores beyond this threshold diminish to less than 0.0005.

An enhanced version of the RP model was employed to explore the 
potential target genes regulated by transcription factors. This model 
extends beyond incorporating exon information by also accounting for 

the regulatory impact of adjacent genes. Specifically, if a peak is 
detected within the exon region of a gene, the corresponding score is 
assigned the value of 1, which is then normalized relative to the gene's 
total exon length. Conversely, should a peak reside in the promoter or 
exon region of a neighboring gene, its score is designated as 0.

Preprocessing transcriptomic input data 
Single-cell RNA-seq data We first preprocess counts matrix for each 
cell following Scanpy worflow(Wolf, et al., 2018). Next, principal 
component analysis (PCA) is performed using 𝑠𝑐𝑎𝑛𝑝𝑦.𝑡𝑙.𝑝𝑐𝑎() 
function to reduce data dimensionality. We compute neighboring cells 
for each cell using 𝑠𝑐𝑎𝑛𝑝𝑦.𝑝𝑝.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() function, setting the 
number of neighbors to N_neighbors (default 10) and the number of 
principal components to N_pcs (default 40). Finally, we apply 
𝑠𝑐𝑎𝑛𝑝𝑦.𝑡𝑙.𝑢𝑚𝑎𝑝() function for UMAP dimensionality reduction and 
perform Leiden clustering using 𝑠𝑐𝑎𝑛𝑝𝑦.𝑡𝑙.𝑙𝑒𝑖𝑑𝑒𝑛() function with a 
resolution parameter set to resolution (default 0.8) to stratify cellular 
populations. 
Spatial transcriptomics RNA-seq data After normalizing the count 
matrix, SCRIPro utilizes the approach from STAGATE(Dong and 
Zhang, 2022) to build a spatial neighbor network (SNN), integrating the 
similarity between adjacent spots of a given location, and subsequently 
transforms this spatial data into an undirected neighbor network based 
on a predetermined radius r. Subsequently, utilizing a cell type-aware 
module, the SNN is pruned based on pre-clustered gene expression. 
After constructing SNN, SCRIPro employs a graph attention auto-
encoder to integrate gene expression and spatial location. In cell type-
aware module, SCRIPro employs a self-attention mechanism for both 
types of SNNs. The learned spatial similarities from the standard SNN 
and the cell type-aware SNN are denoted as attspatial and attaware, 
respectively. The final spatial attribution used is a linear combination of 
these two (where α, the default hyperparameter set at 0.5, represents the 
weight of the cell type-aware SNN):

att = (1 ― α)attspatial + αattaware2)

The output of the decoder is considered as the reconstructed normalized 
expressions. We then perform dimensionality reduction on the 
integrated data using 𝑠𝑐𝑎𝑛𝑝𝑦.𝑝𝑝.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() and 𝑠𝑐𝑎𝑛𝑝𝑦.𝑡𝑙.𝑢𝑚𝑎𝑝(), 
following the same methodology as above.

SuperCell Construction 
After employing leiden clustering(Traag, et al., 2019) to identify cell 
subsets at a resolution parameter of 0.8, each cluster is treated as an 
independent RNA-seq dataset. Using a binary search method, we 
iteratively increase the secondary resolution to obtain more refined 
leiden cluster classifications until the average number of cells in each 
small leiden cluster reaches a user-specified N. SuperCells within each 
large Leiden cluster that contain fewer than 30 cells are merged with the 
nearest SuperCell to ensure a minimum of 30 cells per SuperCell.

Marker genes are then computed for each Supercell: 
For smaller scRNA-seq datasets, we identify the top 500 marker genes 
per Supercell using the scanpy.get.rank_genes_groups_df() method.
For larger datasets (cell number > 150,000), we recommend you to use 
large-scale marker gene selection strategy. We extract top 1500 genes in 
each leiden cluster, and then identify genes expressed above the 60% 
percentile in each Supercell as marker genes for subsequent analyses. 
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SuperCells with fewer than 35 selected marker genes are excluded from 
further calculations.

Chromatin landscape Construction
SCRIPro has two different strategies for constructing chromatin 
landscapes:
(1) For scRNA-seq data, SCRIPro use chromatin landscapes constructed 
in “Reference Dataset” (see Methods). Then SCRIPro performs LISA's 
ISD calculations for each SuperCell's marker genes within 8 chunks (by 
default), obtaining results for each SuperCell. 
(2) In the context of multi-omics data, there are generally two scenarios: 
whether the barcodes from scRNA-seq and scATAC-seq are matchable. 
If the barcodes match, such as with 10x Chromium, clustering is first 
performed using scRNA-seq data to delineate SuperCells, and then the 
scATAC-seq data is used to construct the landscape for each SuperCell 
during the ISD step. If the barcodes do not match, as with scMultiome-
seq, SCRIPro initially employs GLUE(Cao and Gao, 2022) to integrate 
the two datasets, matching RNA and ATAC omics information within 
the same cell. Subsequently, the reconstruction of the ATAC landscape 
is carried out following the steps described above. To prepare the 
scATAC-seq data, we sort it using the bedtools(Quinlan and Hall, 2010) 
sort command and merge intervals within each sorted TSV file, ensuring 
that they do not exceed 1000 bases, using the bedtools merge command. 
Each merged TSV file is then converted into a bigwig format file using 
the bedGraphToBigWig command(Kent, et al., 2002). These bigwig 
files, corresponding to each SuperCell, are used as the landscape during 
the ISD step.

In silico deletion in SCRIPro
SCRIPro performs in silico deletion with the same strategy as LISA. 
LISA's chromatin landscape model uses L1-regularized logistic 
regression to select an optimum sample set for H3K27ac ChIP-seq or 
DNase-seq samples. LISA first calculated the chrom-RP for each 
RefSeq gene. The chrom-RP for gene k in sample j is defined as

𝑗 =
𝑖∈[𝑡𝑘―𝐿,𝑡𝑘+𝐿]

𝑤𝑖𝑠𝑗𝑖

L is set to 100 kb, The weight 𝑤𝑖 represents the regulatory impact of a 
locus at position i on the gene k's transcription start site at genomic 
position tk. s𝑗𝑖 is the signal of chromatin profile j at position i. 

LISA also calculates peak-RP for each set of ChIP-seq data. The 
definition of peak-RP is same to what has mentioned above. Then the 
ISD method recalculates the chrom-RP after erasing the signal in all 1-
kb windows containing at least one peak from a putative regulatory 
cistrome, and then comparing the model RPs with and without deletion 
to produce a ΔRP value for each gene. The combined statistics method 
for TR ranking compares the peak-RPs or ΔRPs of the query gene set 
with that of the background gene set. It uses the one-sided Wilcoxon 
rank-sum test and combines peak-RP, DNase-seq, and H3K27ac chrom-
RP for ChIP-seq-based methods. The Cauchy combination test is used 
to compute a summary p value for each TR.

Calculate SCRIPro TR score
SCRIPro applies a negative logarithmic transformation to the summary 

p-values obtained from LISA's ISD results, serving as the score for 

individual TRs within each SuperCell.   

𝑁 = ― log 𝑃𝑠𝑢𝑚𝑚𝑎𝑟𝑦

Additionally, for each TR and its corresponding targets within a 
SuperCell, we calculate a z-score relative to the mean:

𝑀𝑇𝑅 =
𝐸𝑖，𝑚 ― 𝑚𝑒𝑎𝑛(𝐸𝑚)

𝑠𝑡𝑑(𝐸𝑚)                                                           (5)

𝑀𝑇𝑅 =
4    𝑖𝑓 𝑥 > 4

𝑀𝑇𝑅   𝑖𝑓 ― 4 ≤ 𝑥 ≤ 4
―4   𝑖𝑓 𝑥 <  ― 4

                                                    (6)

𝑀𝑇𝑎𝑟𝑔𝑒𝑡 =
∑𝑘

1

𝐸𝑖，𝑛 ― mean(𝐸𝑛)
std(𝐸𝑛)

𝑘                                           (7)

𝑀𝑇𝑎𝑟𝑔𝑒𝑡 =
4    𝑖𝑓 𝑥 > 4

𝑀𝑇𝑎𝑟𝑔𝑒𝑡   𝑖𝑓 ― 4 ≤ 𝑥 ≤ 4
―4   𝑖𝑓 𝑥 <  ― 4

                                    (8)

𝑀𝑒𝑥𝑝 = 𝑀𝑇𝑅 + 𝑀𝑇𝑎𝑟𝑔𝑒𝑡                                                            (9)

𝑆 = 𝑁 ×
𝑀𝑒𝑥𝑝 ― min 𝑀𝑒𝑥𝑝

max (𝑀𝑒𝑥𝑝) ― min 𝑀𝑒𝑥𝑝
                                      (10)

where E represents the expression value of TRs (represented by m) or 
target genes (represented by n), while i denotes each SuperCell. More 
specifically, k represents the target genes regulated by TR m. For each 
set of ChIP-seq data, we select genes with an RP score > 5 as the target 
genes for this TF. If the number of genes with an RP score > 5 is less 
than 300, then we choose the top 300 genes in RP score ranking as the 
target genes. For each TR within a SuperCell, we first calculate the z-
score of the TR value to obtain MTR (Equation 5). Then, We average the 
Z-scores of each target gene to get MTarget (Equation 7). Both MTR and 
MTarget clip with (-4,4) as the threshold(Equation 6), and the influence of 
extreme values on them has been subtracted. Then MTR and MTarget is 
added to obtain the Mexp(Equation 9), which is the coefficient for LISA 
Pvalue correction. The TR activity score (S) is equal to N(negative 
logarithmic transformation of the summary p-values of each TR) 
multiplied by the the max-min normalized Mexp(Equation 10). These 
steps ensure that both the expression of TR and target genes were 
included when calculating the final TR activity score.

Dataset analysis methods
(1) CRISPRa human T Cells Dataset
Preprocessing We downloaded this dataset (PRJNA787633) from 
http://www.perturbase.cn/download. The downloaded data has already 
undergone preprocessing and mixscape analysis. We selected cells with 
the 'gene' label in the SCRIPro reference TR dataset for downstream 
AUPRC and AUROC analysis. We applied SCRIPro (SCRIPro 
reference), SCENIC, SCING and LISA (LISA reference) to this dataset 
with default parameters, and then performed downstream performance 
testing using the TR enrichment scores inferred by these methods. 
Specifically, SCRIPro uses the tf_score matrix, SCENIC uses the 
AUCell matrix, and SCING uses the aucs_mtx matrix for TR in the 
corresponding cluster of gene_membership, where the LISA P value is 
P_value_matrix calculated by SCRIPro.
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Performance comparison of different SuperCell settings We tested 
the performance under different supercell settings by adjusting the 
clustering parameters of SCRIPro.  Specifically, we modified the 
Cell_num parameter in Ori_Data to values of (10, 20, 30, 50, 65, 100, 
200). For Metacell, we set the target_metacell_size to 50, which resulted 
in 581 metacells with an average of 28.7 cells per metacell. Similarly, 
we computed supercells using the Cell_num parameter, setting cell_num 
to 30 to achieve the same granularity as the metacells, resulting in an 
average of 29.78 cells per supercell. We then calculated the AUROC 
and AUPRC for each setting, and recorded the number of supercells and 
the runtime. These results were then visualized using Matplotlib to 
create line charts.

Performance comparison of different methods We use the ‘gene’ 
labels in the dataset as the gold standard to compute the AUROC and 
AUPRC. Specifically, if a cell's gene label corresponds to a particular 
TR, it is labeled as 1; otherwise, it is labeled as 0. Using this data and 
the TR enrichment scores obtained from different methods, we calculate 
AUPRC and AUROC using the precision_recall_curve and auc 
functions from the sklearn package.

(2) B-Cell Lymphoma Dataset
Preprocessing In the scRNA-seq dataset, cells with fewer than 200 
genes and genes present in fewer than 3 cells were removed. We 
retained only cells that had both RNA-seq and ATAC-seq counts. We 
applied SCRIPro with default parameters to the filtered scMultiome-seq 
peak count matrix to evaluate the activity of transcriptional regulators. 
For each TR within a SuperCell, we first calculate the z-score of the TR 
value to obtain MTR (Equation 5). Then, We average the Z-scores of 
each target gene to get MTarget (Equation 7). Both MTR and MTarget clip 
with (-4,4) as the thre-sold(Equation 6)., and the influence of extreme 
values on them has been subtracted. Then MTR and MTarget is added to 
obtain the Mexp(Equation 9), which is the coefficient for LISA Pvalue 
correction. The TR activity score (S) is equal to N(negative logarithmic 
transformation of the summary p-values of each TR) multiplied by the 
the max-min normalized Mexp(Equation 10). These steps ensure that 
both the expression of TR and target genes were included when 
calculating the final TR activity score. The activity scores of different 
TRs were visualized as heatmaps with seaborn’s clustermap and 
projected onto UMAP plots with Scanpy. After integrating the original 
scATAC-seq data with SCRIPro, the resulting landscape was displayed 
using the IGV genome browser(Robinson, et al., 2011).

Clustering Performance Comparison For the assessment of SCRIPro, 
we chose to compare it with SCENIC+(Bravo González-Blas, et al., 
2023). The SCENIC algorithm(Aibar, et al., 2017), which is the 
precursor to SCENIC+, is a widely recognized method for GRN 
inference. SCENIC+ builds upon SCENIC by providing single-cell 
resolution transcription factor activity scores, allowing for a 
comprehensive performance comparison with SCRIPro.
Since SCRIPro relies on ChIP-seq datasets, it is not suitable for direct 
comparison with traditional methods that are based on synthetic GRN 
datasets. Instead, we compared SCRIPro with SCENIC+ in terms of 
gene expression correlation. Specifically, SCRIPro selects the TR 
activity score in SuperCells and calculates the correlation with gene 
expression within those SuperCells. On the other hand, SCENIC+'s 

results are correlated with the original cell expression. Both methods 
were used with their default parameters.
To visualize and cluster the number of target genes of TFs in Tumor B 
Cells and B Cells, we utilized the 𝑠𝑛𝑠.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑎𝑝() function in the 
Seaborn library, using the default parameters. Additionally, we 
employed Metascape(Zhou, et al., 2019) to calculate the GO terms of 
the overlapping genes identified by the two methods. Finally, we 
visualized the GO terms using an R script.

(3) Hair Follicle Development Dataset 
Preprocessing We annotated SHARE-seq data cell types using labels 
from the original study. SCRIPro was applied with default parameters to 
the SHARE-seq data to assess the activity of TRs in each cell.

Pseudotime Analysis We utilized MIRA(Lynch, et al., 2022) for 
trajectory analysis of the SHARE-seq data. We designated ORS as the 
starting cell type and IRS, Cortex, and Medulla as the terminal cell types 
to study the differentiation trajectory in hair follicle development. Cells 
were ordered by pseudotime using the 'mira_pseudotime' column from 
MIRA results. The activity score of each TR in each terminal cell type 
(Medulla_prob/IRS_prob/Cortex_prob > 0.8) was visualized in ternary 
plots.

ATAC-RNA Analysis SCRIP(Dong, et al., 2022) was used to perform 
TR activity analysis on the scATAC-seq data from the SHARE-seq 
data, applying the SCRIP enrichment function with default parameters 
to the peak count matrix. Subsequently, we transformed the numerical 
scores from two distinct matrices—single-cell RNA sequencing data 
(RNA-infer) and single-cell ATAC sequencing data (ATAC-infer)—
into their corresponding ranks. We then proceeded to compute the 
discrepancies between the two matrices by subtracting the RNA-infer 
ranks from the ATAC-infer ranks, thereby deriving a set of differential 
rankings that culminate in final score. These scores were clustered and 
compared according to the pseudotime obtained from MIRA(Lynch, et 
al., 2022).

(4) Mouse Embryonic Development Dataset
Preprocessing The Stereo-seq dataset detailing mouse embryonic 
development was procured from the specified database 
(https://db.cngb.org/search/project/CNP0001543/). SCRIPro build SNN 
and perform graph attention auto-encoder using STAGATE strategy. 
We utilized SCRIPro to process embryonic data at E16.5 to identify 28 
spatial clusters employing a large dataset gene selection strategy. 
Standard preprocessing steps, including quality control, normalization, 
and data filtering, were executed prior to downstream analyses. Motif 
pattern was downloaded from JASPAR(https://jaspar.elixir.no/)(Fornes, 
et al., 2020).

Identification of TR Activity Co-expression Modules The R package 
Giotto 𝑏𝑖𝑛𝑆𝑝𝑒𝑐𝑡() function was employed to discern TRs exhibiting 
spatial coherence in their activity scores as determined by SCRIPro. 
Giotto(Chen, et al., 2023) identified 40 distinct spatial TR modules in 
E16.5 embryo datatset, which were subsequently analyzed using 
heatmap clustering. Centrality metrics were calculated using networkx 
Python package 𝑑𝑒𝑔𝑟𝑒𝑒_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦() function.
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TR Activity Analysis and Comparison To assess the cluster purity of 
the identified spatial domains, we adopted ROGUE score 
(https://github.com/PaulingLiu/ROGUE). Transcription factor activity 
scores were computed using both SCENIC and SCRIPro, adhering to 
their default parameters. The re-clustering of these scores, integrating 
spatial context, facilitated the computation of the ROGUE score via the 
R package ROGUE. Normalized Mutual Information (NMI) scores were 
derived by comparing the clustering outcomes of TR activity scores 
obtained from both methods against those from STAGATE clustering.

(5) P22 Mouse Brain Spatial Multi-omics Dataset Analysis 
Preprocessing The spatial ATAC-RNA-seq multi-omics dataset of the 
P22 mouse brain was retrieved from the cited source (GSE205055). The 
𝑠𝑐𝑟𝑖𝑝𝑟𝑜.𝑐𝑎𝑙_𝐼𝑆𝐷_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙() function from SCRIPro was then 
employed to analyze the multi-omics data, resulting in the determination 
of TR activity scores for each SuperCell. We employed the 𝑏𝑖𝑛𝑆𝑝𝑒𝑐𝑡() 
function in Giotto to identify spatially variable TRs and subsequently 
conducted heatmap clustering to discern cell type-specific TRs. The 
pseudotime spatial trajectory analysis of neural stem cell emergence was 
explored by spaceFlow(Ren, et al., 2022). 

Wasserstein distance calculation To investigate the impact of 
signaling pathways on TR expression in spatial contexts, we used the 
Wasserstein distance(Flamary, et al., 2021) to measure differences in 
TR and gene expression across brain regions, utilizing spot positions as 
coordinates and expression levels as values. For a ligand expressed in 
𝑚 spots and a receptor expressed in 𝑛 spots, we formed a matrix 𝐷 ∈
𝑅𝑚×𝑛 to record the Euclidean distances between spots, based on spatial 
coordinates. By identifying an optimal transport 𝛾′ ∈ 𝑅𝑚×𝑛 that 
minimizes the total transport cost of ligand and receptor expression 
distributions: 𝐿 ∈ 𝑅𝑚×1  and 𝑅 ∈ 𝑅𝑛×1. This total transport cost is 
determined by summation of the products of the transport value and the 
Euclidean distance between each spot. Based on the optimal transport 
plan, the Wasserstein distance can be computed as follows:

𝑊(𝐿,𝑅) = min
γ ∈ τ(𝐿,𝑅)

< 𝛾,𝐷 > =< γ′,𝐷 >

We filter target gene expression presented in the L-R interactions 
collection (collected from NicheNet (Browaeys, et al., 2020)), 
considering these as signaling pathways in cell-cell interactions. Next, 
we screened the L-R interaction pair based on the expression pair of TR 
and its target genes in adjacent cells, and considered it to be a potential 
signaling pathway for cell-cell interaction.

Fig. 1 Overview of SCRIPro.
SCRIPro takes single cell RNA-seq or spatial RNA-seq as input. SCRIPro first employs density clustering using a high coverage SuperCell strategy. 

While for spatial data, SCRIPro combines gene expression and cell spatial similarity information to a latent low-dimension embeddings via a graph 

attention auto-encoder. Then SCRIPro conducts in silico deletion analyses, utilizing matched scATAC-seq or reconstructed chromatin landscapes 

from public chromatin accessibility data, to assess the regulatory significance of TRs by RP model in each SuperCell.  At last, SCRIPro combines 

TR expression and TR to generate TR-centered GRNs at the SuperCell resolution.  The output of SCRIPro can be applied for TR target clustering, 

temporal GRN trajectory and spatial GRN trajectory.
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3 Results
3.1 SCRIPro combines comprehensive chromatin and TR 
binding references to predict GRNs for both single-cell and 
spatial multi-omics data
SCRIPro comprises expression and chromatin modules corresponding 
to input transcriptomic and epigenomic data (Fig. 1). (1) The 
expression module accepts single-cell or spatial transcriptome data.To 
overcome gene coverage limitations and minimize drop-out effects, 
SCRIPro utilizes a density clustering approach based on K-nearest 
neighbor (KNN) and a graph attention auto-encoder to generate 
SuperCells(Littman, et al., 2023) with consistent expression patterns or 
spatial coordinates(Dong and Zhang, 2022) (Fig. 1, Supplementary Fig. 
S1A-B). The SuperCell expression is then used o evaluate TR 
expression levels and co-expression patterns within GRNs. For 
expression-only data, SCRIPro curates an extensive collection of 
public chromatin references encompassing 1,471 DNase-seq data and 
2,575 H3K27ac data for human and mouse samples (Zheng, et al., 2019) 
(Supplementary Fig. S1C-E). Subsequently, SCRIPro employs a 
logistic regression-based approach to scan the chromatin reference and 
reconstruct in silico chromatin landscapes that best match resemble 
marker genes identified in SuperCells (Supplementary Fig. S1A). (2) 
The chromatin module of SCRIPro can utilize experimentally paired or 
GLUE-integrated single-cell or spatial ATAC-seq inputs to build 
chromatin landscapes. SCRIPro then uses the in silico or paired 
chromatin landscapes to assess the importance of TRs. 

SCRIPro compiles a comprehensive TR reference dataset comprising 
2,314 human TR ChIP-seq data and 1,920 mouse TR ChIP-seq data 
(Fig. S2A-B, Table S1). This reference dataset is enriched with high-
quality motifs from cis-BP and HOMER, covering 1,252 human TRs 
and 994 mouse TRs (Supplementary Fig. S2C-F). SCRIPro conducts 
in silico deletion analyses of TR binding sites to evaluate the TR impact 
on the expression of marker genes within SuperCells (Fig. 1 and 
Supplementary Fig. S1A). The potential TR targets are determined 
based on the best-matched TR ChIP-seq data for a given SuperCell 
using a regulatory potential (RP) model (Supplementary Fig. S1A). 
Subsequently, SCRIPro integrates TR-target expression from 
transcriptome data and TR-target importance from epigenome data to 
compute the final TR activity within a SuperCell, identify regulated 
genes, and construct TR-centered GRNs. Moreover, SCRIPro can 
directly apply the SCRIP method for scATAC-seq-only data to predict 
TRs (Supplementary Fig. S1B).

SCRIPro's performance is further evaluated through downstream 
benchmarking, including assessing TR activity accuracy, clustering 
analysis, identifying cell type or stage-specific GRNs, and region-
specific GRNs across various biological systems.

3.2 Performance evaluation and parameter selection
To quantitatively evaluate SCRIPro's performance, we used a 

published single-cell CRISPR activation dataset that screens for T-cell 
stimulation regulators in primary human T-cells as the benchmark for 
GRN inference methods (Fig. 2A). We specifically analyzed cells 
containing sgRNAs targeting 15 TRs from the original 70 hits to 
benchmark performance. Our hypothesis was that cells with introduced 
TR sgRNAs would demonstrate increased TR activity, detectable 

through GRN inference algorithms. Initially, we benchmarked various 
parameters and selected 30 cells per SuperCell, balancing performance 
and computational efficiency (Fig. 2B-C). While different methods of 
generating SuperCells showed no significant differences in 
performance, the SuperCell strategy proved to be more 
computationally efficient than MetaCell(Persad, et al., 2023) (Fig. 2D). 
Furthermore, we evaluated the reconstructed TR activities using 
different methods. Both AUROC and AUPRC metrics indicated that 
SCRIPro outperformed SCING, SCENIC, and the LISA methods 
(which SCRIPro was modified from) (Fig. 2E-G). The consistent 
results were observed at both single-cell and supercell levels, as well 
as when using different TR references. These findings collectively 
demonstrate the robust and accurate performance of SCRIPro 
compared to existing methods.

3.3 SCRIPro identifies tumor-specific GRNs in the human B-cell 
lymphoma 10X multi-ome dataset
We benchmarked the performance of SCRIPro on a human B-cell 
lymphoma (small lymphocytic lymphoma, SLL) dataset using 10X 
single-cell multi-ome containing 14,566 cells. We annotated 9 major 
cell types based on the expressed marker genes of each lineage, and 
tumor B-cells form a slightly different cluster compared to normal B-
cells (Fig. 3A). For multiome data, SCRIPro first integrates RNA and 
ATAC data to obtain integrated clusters (Supplementary Fig. S3A). 
SCRIPro could accurately predicts well-known master regulators 
including SPI1, IRF1, FLI1, and STAT2 for mono/macrophages, 
GATA3, RUNX3, SMARCA4, JUND, and MYB for T-cells, PAX5, 
BCL2 and IRF4 for B and tumor B-cells (Fig. 3B, Supplementary Fig. 
S3B). The identified TR ChIP-seq reference corresponds well to the 
chromatin landscape from scATAC-seq at the SuperCell level, 
suggesting that the ChIP-seq reference is informative in predicting TR 
binding events (Fig. 3C). We compared the performance of SCRIPro 
with SCENIC+, a widely used algorithm that infers GRNs based on a 
combination of motif enrichment and GRNBoost2(Moerman, et al., 
2019). SCRIPro successfully identifies IRF8 in plasmacytoid dendritic 
cells (pDCs), which has been reported to be essential for the 
development of pDC and type 1 conventional dendritic cells(Sichien, 
et al., 2016). However, SCENIC+ fails to assign IRF8 scores, possibly 
due to the limited number of pDC cells. SCRIPro specifically enriches 
SPIB, a driver regulator that mediates apoptosis through the PI3K-AKT 
pathway in diffuse B-cell lymphoma(Takagi, et al., 2016), in tumor B-
cells but not normal cells, while SCENIC+ fails to predict the SPIB 
activity in all the B-cells (Fig. 3D). Finally, we assume the inferred TR 
activity should be highly correlated with their gene expression, with a 
positive correlation for activators and a negative correlation for 
repressors. SCRIPro shows a significantly high concordance between 
TR activity and TR expression compared to SCENIC+, with over 80% 
(81/105) of the factors showing better consistency (Fig. 3E, 
Supplementary Fig. S3C). Importantly, SCRIPro predicts activity 
scores for nearly 800 TRs, while SCENIC+ is only able to evaluate over 
100 TR activities (Supplementary Fig. S3D). In summary, these 
analyses suggest that SCRIPro can accurately infer GRNs globally and 
outperforms existing methods in terms of consistency between TR 
activity and TR expression. 
B-cell lymphoma develops as a result of abnormal interactions between 
B cells and the microenvironment during development(Garaud, et al., 
2019). Given the accurate identification of TR activities specific to 
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tumor B-cells, including SPIB, using SCRIPro, we conducted a 
systematic analysis to identify tumor-specific GRNs that potentially 
drive malignancy. Unsupervised clustering of TR activity identifies 
three independent clusters in tumor B-cells, compared to two clusters 
in normal B-cells (Fig. 3F). Both Group 1 and 2 were shared between 
tumor and normal B-cells, with Group 1 enriched in B-cell activation 
and differentiation, and Group 2 enriched in cytoplasmic translation 
that is important for B-cell development (Fig. 3G, Supplementary Fig. 
S5A-D). Notably, the majority of TRs in Group 3 of tumor B-cells 

belonged to the ZNF family, which has been reported to silence 
retrotransposons and regulate epithelial proliferation(Cassandri, et al., 
2017; Imbeault, et al., 2017) (Fig. 3F-H). These analyses suggest that 
tumor B-cells may employ alternative proliferation strategies, such as 
activating epithelial proliferating genes. Collectively, our analyses 
demonstrate the superior accuracy and sensitivity of SCRIPro in 
identifying cell-type-specific TRs, even enabling the discrimination 
between similar cell types.

Fig. 2 Benchmark of SCRIPro using single cell CRISPR activation dataset.
A. UMAP of GSE190604 single cell CRISPRa dataset.

B. AUROC and AUPRC of different SuperCell resolution.

C. Running time and SuperCell size of different SuperCell resolution.

D-G. Comparison of Metacell and SuperCell (shared TR = 15), SCRIPro and SCING (shared TR = 10), SCRIPro and SCENIC (shared TR = 9), SCRIPro and LISA (shared TR 

= 15).
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3.4 SCRIPro reveals epigenetic priming effects of mouse hair 
follicle differentiation
TRs play a crucial role in driving cell type differentiation, compared to 
static datasets that only contain differentiated cells, reconstructing 
GRNs from developmental datasets presents challenges due to subtle 
differences along the development trajectories. We next benchmarked 
the performance of SCRIPro on a hair follicle differentiation dataset 
generated using the SHARE-seq protocol(Ma, et al., 2020). The cells 
were annotated into 7 major cell types including outer root sheath 
(ORS), transit-amplifying cells-1 (TAC-1), and TAC-2, medulla, hair 
shaft-cuticle cortex (cortex), inner root sheath (IRS), and mix cells 
(Supplementary Fig. S6A). Starting from ORS cells, pseudo time 
analyses suggest three distinct differentiation paths that led to the 
formation of medulla, cortex and IRS cells (Supplementary Fig. S6B). 
SCRIPro robustly identifies TRs enriched in the initial ORS cell type 
and the three different trajectories (Supplementary Fig. S6C, 
Supplementary Fig. S7A and Supplementary Fig. S8A). For instance, 
medulla cells exhibited unique TR activity including Prdm1, Pbx3, and 
Rnf2, known for their significant regulatory roles in medullary-related 
functions(Roberts, et al., 2017) (Rhee, et al., 2004). Cortex cells were 
characterized by specific activities of Lef1(Zhang, et al., 2013) and 
Rora(Steinmayr, et al., 1998). Furthermore, IRS cells exhibited high 
activity of Gata3, an important TR in the skin stem cell lineage during 
the initiation of epidermal stratification and hair follicle IRS 
patterning(Kaufman, et al., 2003) (Supplementary Fig. S6D). These 
analyses demonstrate the capability of SCRIPro to identify lineage-
specific GRNs along the developmental trajectory even with subtle 
differences.

Traditional GRN prediction methods designed for scRNA-seq datasets, 
such as SCENIC, PIDC, and SCODE, primarily rely on the co-
expression information to infer TR regulation. However, the prediction 
of TR activity based on gene expression and chromatin accessibility can 
be decoupled due to the influence of epigenetic priming. Since SCRIPro 
could both reconstruct the TR activity from expression (transcriptome-
only module) and chromatin accessibility (epigenome-only or paired 
module), we compared the difference between RNA versus ATAC 
inferred TR activity to systematically evaluate the potential priming 
effect. We focused on specific developmental lineage, for example, the 
ORS to medulla path. Encouragingly, our analysis revealed a TR group 
in which chromatin-inferred activity preceded expression-inferred 
activity (Supplementary Fig. S6E-F, Group 1), indicating a strong 
epigenetic priming effect that leads to a delay in target gene expression. 
Conversely, Group 2 exhibited an opposite trend, with RNA-inferred 
activity preceding ATAC-inferred activity (Supplementary Fig. S6G). 
Notably, many factors in this group possess repressive functions 
including Jarid2 and Mtf2, subunits of the PRC2 complex reported in 
mouse embryonic stem cells(Zhang, et al., 2011), thus validating the 
priming effect of repressive H3K27me3 modifications. Group 3, 
comprising the majority of TRs, displayed largely synchronous patterns 
regardless of whether they were predicted using RNA or ATAC data 
(Supplementary Fig. S6E, H). Similar patterns were observed for the 
ORS to cortex and ORS to IRS directions (Supplementary Fig. S8B). In 
summary, these analyses confirm the epigenetic priming effect using the 
hair follicle development SHARE-seq data and also underscore the 
importance of chromatin landscapes in accurately predicting the TRs 
required for the differentiation of future trajectories.
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Fig. 3 SCRIPro identified tumor-specific GRNs in the human B-cell lymphoma 10X multi-ome dataset.
A. UMAP of 9 cell types identified in human B-cell lymphoma dataset. Mono: Monocytes. pDC: Plasmacytoid dendritic cells. 

B. Heatmap showing the clustering of TRs by cell type. Top: Cell types annotated in Figure A. Right: Highlighted TRs.

C. The PAX5 ChIP-seq signal landscape identified by SCRIPro, which is aggregated based on SuperCells, show across tumor B and B cell types for POU5F1 and BTG4 

genes on chr11:111349018-111403152.
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D. UMAP showing the predicted distributions of IRF8 and SPIB by SCRIPro and SCENIC+. IRF8 is highlighted in the pDC cell type in SCRIPro, while SPIB is prominent 

in Tumor B cells.

E. Box plot depicting the Pearson correlation between TRs and gene expression by SCRIPro, LISA P Value, SCENIC, SCENIC+ and SCING.

F. Heatmap clustering of TRs in tumor B and B cell types on the SCRIPro TR activity scale. Top: TR heatmap in the tumor B cell type, showing 3 clusters. Bottom: TR 

heatmap in the B cell type, showing 2 clusters. Right: An enlarged view of the group 3 (outlined in red) of the heatmap for tumor B, with all TRs labeled on the right.

G. Top: Venn diagram showing the overlap of TRs between B cell group 1 and tumor B cell group 1. Bottom: Venn diagram showing the overlap of TRs between B cell group 

2 and tumor B cell group 2.

H. GO terms of the targets shared by TRs in Group 3.

3.5 Integration of spatial information enhances TR activity and 
GRN prediction on E16.5 mouse embryo Stereo-seq data
To showcase the superior performance of SCRIPro in reconstructing 
spatial GRNs by integrating spatial locations and neighborhood 
information, we applied it to a Stereo-seq dataset derived from E16.5 
mouse embryos(Chen, et al., 2022) (Fig. 4A). Our spatial clustering 
strategy successfully identified 28 cell types with unique spatial 
locations (Fig.4A, Supplementary Fig. S9A), and exhibiting denser cell 
positioning and higher within-cell type homogeneity compared to other 
spatial-based methods, including BayesSpace(Zhao, et al., 2021), 
Giotto(Dries, et al., 2021), and the raw annotations from Stereo-seq 
(using Squidpy) (Chen, et al., 2022)(Supplementary Fig. S9B). For 
instance, in the heart region, the BayesSpace clustering mixed different 
heart cell types, while Giotto, the Stereo-seq raw annotations, and 
SCRIPro all revealed distinct spatial patterns corresponding to the 
various heart cell populations (Supplementary Fig. S9C). However, in 
the brain and spinal cord regions, Giotto failed to differentiate thalamus 
neurons, and the raw annotations could not separate the spinal cord from 
the mid/hindbrain. In contrast, the spatial domains identified by 
SCRIPro delineated these anatomical sub-regions (Supplementary Fig. 
S9D, indicated by black arrows). Furthermore, the ROGUE score 
analyses indicated that the spatial domains defined by SCRIPro were 
more homogeneous compared to the other methods (Fig. 9E).We next 
quantified the TR activity in different cell types and re-clustered the 
cells by TR activity. SCRIPro demonstrated a significantly higher 
consistency with the cell types generated by spatial clustering compared 
to SCENIC (Supplementary Fig. S10A-B). For instance, we examined 
the TRs Foxo1 and Foxo3, known to be enriched in the brain and facial 
regions including the striatum, anterior thalamic nucleus, olfaction, and 
dental epithelium(Hoekman, et al., 2006). SCRIPro robustly predicted 
the TR activity in these regions, with Foxo3 exhibiting a dispersed 
distribution compared to Foxo1(Hoekman, et al., 2006). In contrast, 
SCENIC failed to enrich either factor in the brain and facial regions 
(Supplementary Fig. S10B). Gata6 plays a critical role in cardiac 
function with pronounced enrichment in the outflow tract and aortic 
arch(Xin, et al., 2006), SCRIPro distinctly identified the Gata6 activity 
across different spatial subsets of the heart (Supplementary Fig. S10B). 
Additionally, SCRIPro exhibited a broader TR coverage and 
successfully predicted the spatial TR activity for Neurod2 and Otx2 in 
distinct brain regions, which were not covered by SCENIC 

(Supplementary Fig. S10C). Finally, we benchmarked the performance 
of SCRIPro on homologous factors with similar motifs. SCRIPro 
accurately localized Gata4 in the heart region and Gata1 in the 
developing liver region, despite the highly resemblant motifs of these 
two factors (Fig. 4B). Similarly, SCRIPro demonstrated the ability to 
distinguish between Tcf12 and Tcf7, demonstrating the ability in 
identifying cell type-specific binding patterns of homologous factors 
through incorporating ChIP-seq data (Supplementary Fig. S10D). 
Collectively, these results suggest SCRIPro could accurately predict cell 
type and region-specific GRNs than existing tools on the spatial 
transcriptomic-only dataset, with the ability to distinguish TRs with 
similar motif patterns.
TRs and their associated cofactors collaborate to modulate downstream 
genes, thereby establishing GRNs instrumental in determining cell 
phenotypes. To evaluate the effectiveness of SCRIPro in identifying TR 
regulons, we focused on factors enriched in the embryonic liver, 
specifically Gata1(Papadopoulos, et al., 2013) and Tal1(Elefanty, et al., 
1999). We conducted a screening of their target genes and pruned the 
network based on TR-target co-expression, resulting in the generation of 
co-regulation regulons (Fig. 4C). Functional analyses revealed that both 
TRs are linked to myeloid cell and erythrocyte differentiation and 
homeostasis, indicating a potential co-binding of these two TRs in 
regulating hematopoietic function in the embryonic liver (Fig. 4C). 
Similarly, by iteratively clustering the spatially variable TRs and regulon 
co-expression patterns, we successfully identified 40 co-regulated gene 
modules in the mouse E16.5 embryo (Fig. 4D and Supplementary Fig. 
S11A-B). These modules show highly specific spatial patterns, including 
Pax5 for forebrain (M1), Neurog2 for mid/hindbrain (M10), Myog for 
muscle cells (M38), Msx1 in maxillary and limb mesenchymal 
cells(Jumlongras, et al., 2001) (M3), and Hoxc8 in the mouse embryonic 
spine(Blackburn, et al., 2009) (M36) (Fig. 4D and Supplementary Fig. 
S11B). Within each module, SCRIPro also constructed TR-centered 
GRNs to identify crucial factors. For example, Myod1, Myog, Mef2d, 
and Myf5 were identified as key nodes in the M38 muscle module, 
aligning well with their known roles as muscle master regulators (Fig. 4E). 
In summary, these analyses demonstrate the ability of SCRIPro to 
accurately identify TR target genes and construct cell type-specific GRNs, 
thereby enabling the identification of potential novel master regulators for 
each lineage.
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Fig. 4 SCRIPro detected cell type specific GRNs in E16.5 mouse embryo Stereo-seq data.
A. SCRIPro identified 28 cell types on E16.5 mouse embryo stereo-seq dataset.

B. SCRIPro can distinguish different TRs spatial distribution with similar motif in same family.

C. SCRIPro is capable of predicting Gata1 and Tal1 target genes and build GRNs, and utilizes these target genes for GO analysis.

D. Heatmap showing the modules with significant spatial autocorrelation that are clustered into different modules based on spatial co-expression of E16.5 embryo.

E. Calculate TR center degree in module 38 (muscle) and find out important TRs.
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3.6 SCRIPro detects stage-specific GRNs in cardiomyocytes 
across mouse embryonic heart sections
Our previous analyses demonstrate that SCRIPro could identify lineage- 
and stage-specific GRNs in the hair follicle development dataset, we next 
evaluated whether it is suitable for analyzing time-series spatial datasets. 
We applied SCRIPro on mouse embryo stereo-seq data(Chen, et al., 2022) 
spanning from E11.5 to E15.5 across five continuous stages (Fig. 5), and 
aligned these spatial slides using SLAT(Chen-Rui, et al., 2023) (Fig. 5A). 
Our focus was on heart development, given its early formation in 
mammalian embryos and the diverse changes observed in 
cardiomyocytes from E11.5 to E15.5 (Fig. 5B). We categorized cells in 
the heart region into different celltypes from E11.5 to E15.5 
(Supplementary Fig. S12A-B). Encouragingly, SCRIPro identifies highly 
specific TR activity among different cell types starting from E11.5, 
including Gata6, Jund, and Mef2c for cardiomyocytes, Tcf4 and Hoxb3 
for epicardium, and Sox9 for fibroblasts (Fig. 5C). To further elucidate 
the dynamics of TRs and their regulons during cardiomyocyte 
development, we constructed a cross-stage GRN based on enriched TRs 
in cardiomyocytes (Supplementary Fig. S13B).  Our analyses identified 
stage-shared regulators including Nkx2-5, Hand2, Gata4, and Mef2d. 
Most of these factors are supported by existing literatures(Jumlongras, et 
al., 2001) (Blackburn, et al., 2009)(Fig. 5D and Supplementary Fig. 
S13A). We applied the same analysis to single-cell mouse embryo hearts 
across the same developmental stages. Focusing on cardiomyocytes (CM) 
as an example, we found that the inferred transcriptional regulators (TRs) 
at different stages were generally consistent between the scRNA-seq and 
spatial transcriptomics (ST) data (Supplementary Fig. S12C-D). For 
instance, the TR Nkx2-5 was identified as important across all three stage. 
Additionally, stage-specific TRs, such as Foxp1 in E11.5-E13.5 CM and 
Clock in E13.5-E15.5 CM, as well as the cell-type-specific TR Tbx5 in 

atrial cardiomyocytes  (Supplementary Fig. S12D, S13A), exhibited 
similar dynamics in both scRNA-seq and ST data. However, we also 
observed differences in the inferred TRs between the two data modalities. 
The scRNA-seq-specific TRs at E11.5, including Hdac2, Dicer1, and 
Kdm2b, were primarily associated with DNA repair, epigenetic 
regulation, and metabolic functions, and were often nucleus-enriched. In 
contrast, the ST-specific TRs across the three stages, such as Stat3, 
Smad4, Tgif1, and Foxp3, were involved in intercellular signaling and 
immune-related functions (Supplementary Fig. S12D).
In addition to TR activity, SCRIPro robustly identified the TR regulons, 
for which can be used to evaluate the stable or dynamic regulation of 
different TRs (Fig. 5E). Most TRs showed conserved regulation of its 
regulon among different stages. However, Prdm16, a regulator for brown 
adipocyte differentiation(Harms, et al., 2014), shows remarkable 
dynamics in its regulon(Cibi, et al., 2020; Wu, et al., 2022) (Fig. 5E). We 
performed functional analyses of different subsets of the Prdm16 regulon 
and found that the constant Prdm16 regulon was enriched in fatty acid 
beta-oxidation, consistent with its well-known regulatory functions 
(Supplementary Fig. S13C). Interestingly, the genes lost at E11.5 were 
highly enriched in glycogen metabolism, while the unique genes at E13.5 
were specifically enriched in NADP metabolism (Supplementary Fig. 
S13C). These analyses suggest that Prdm16 may play a critical role in the 
metabolic reprogramming from glycolysis to oxidative phosphorylation 
in cardiomyocytes, which has been reported to be connected with the 
proliferation ability of cardiomyocytes(Li, et al., 2023; Puente, et al., 
2014). In summary, SCRIPro effectively tracks and analyzes the 
dynamics of TRs as well as their regulons in mouse embryonic heart 
development, enabling future identification of novel lineage regulators 
from spatial transcriptomics-only datasets.
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Fig. 5 SCRIPro identified stage-specific GRNs in consecutive mouse embryonic heart sections.
A. Alignment of embryonic sections from five developmental stages, E11.5, E12.5, E13.5, E14.5, and E15.5, based on clusters predicted by SCRIPro.

B. Annotation of embryonic hearts at three developmental stages: E11.5, E13.5, and E15.5.

C. Highly specific TR activity among different cell types starting from E11.5 to E15.5.

D. TR spatial distribution in 3 stages. Nkx2-5: 3stages shared. Foxp1: E11.5 and E13.5 shared. Clock: E13.5 and E15.5 shared.

E. The stage specific GRNs correlation across three developmental stages.
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3.7 Spatial multi-omic prediction of GRNs reveals crosstalk 
between intra-cellular gene regulation and extra-cellular 
interactions in the P22 mouse brain
Finally, we applied SCRIPro to a spatial ATAC-RNA-seq dataset from 
the mouse brain on postnatal day 22, which provided paired expression 
and chromatin accessibility data along with spatial location. SCRIPro 
successfully identified 10 distinct spatial domains that corresponded 
well with specific anatomical structures (Fig. 6A). Notably, domains 0, 
1, and 3 represented Cortex (CT) regions associated with advanced 
neural and emotional processing functions(Pessoa and Adolphs, 2010). 
Domain 6 corresponded to the Corpus Callosum (CC) region, crucial 
for interhemispheric communication, while domain 9 aligned with the 
Lateral Ventricle (LV) region, known for neural stem cell origins. 
Pseudo-time analysis revealed an inward-to-outward neural stem cell 
emergence pattern consistent with the differentiation trajectories of 
neuron cells (Supplementary Fig. S14A). SCRIPro accurately predicted 
spatial variable TRs for each region. For instance, it identified Sox6 
and Sox10 as significant TRs in the CC region, and Sox2, Sox4, and 
Sox11 in the LV regions, highlighting the pivotal role of the SOX 
family in neurogenesis(Stevanovic, et al., 2021) (Fig. 6B). Additionally, 
Bcl11b and Foxp1(Tamura, et al., 2004) exhibit strong TR activity 
within the striatum, where Bcl11b plays a critical role in the 
differentiation of medium spiny neurons important to motor 
control(Arlotta, et al., 2008) (Fig. 6B). Moreover, Mef2c(Barbosa, et 
al., 2008), Neurod2, and Neurod6(Bormuth, et al., 2013; Lin, et al., 
2004) have been previously demonstrated to regulate gene expression 
in the CT region (Fig. 6C and Supplementary Fig. S14B). These results 
validate the accuracy of SCRIPro in predicting region-specific TRs 
using sparse spatial multiomic datasets.

To further assess SCRIPro's accuracy in predicting TR regulons from 
spatial multiomic data, we constructed GRNs for Sox2 and Mef2c, 
which were enriched in LV and CT regions, respectively (Fig. 6D). The 
targets and functions of these two factors exhibited distinct 
characteristics. The Sox2 regulon was notably enriched in the WNT 
signaling pathway and neural tube/epithelial tube 
development(Mercurio, et al., 2022), while the MEF2C regulon 
predominantly converged on signal transduction, synapse organization, 
and hindbrain development(Harrington, et al., 2020). These analyses 
emphasize the specific functions of these TRs and demonstrate the 
accuracy of SCRIPro in identifying TR-specific regulons. In addition 
to intrinsic gene regulation, cellular crosstalk could also regulate cell 
type-specific TR expression. We then investigated whether spatial 
GRN analyses could be used to identify extracellular regulations on 
TRs such as cell-cell interactions. Specifically, we focused on the TRs 
with documented ligand-receptor pairs (see Methods). For example, we 
observed a high enrichment of NOTCH1 activity in the LV region (D9), 
which is known to harbor neural stem cells. Interestingly, its upstream 
regulator Dlk1/2(Sánchez-Solana, et al., 2011) and Jagged1(Fissel and 
Farah, 2021) were found to have closer associations with the NOTCH1 
regulon in the LV region compared to the CC region (D6) and CT 
region (D0) (Fig. 6E). Similar analyses using FGFR1 expression did 
not yield significant differences (Supplementary Fig. S14C). In 
summary, SCRIPro effectively utilizes spatial multiomic data to 
construct detailed GRNs in the mouse brain, revealing distinct TR 
specificity across different spatial regions and facilitating the 
exploration of extracellular regulations influencing TR expression in 
different regions.
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Fig. 6 Spatial multi-omic prediction of GRNs reveals crosstalk between intra-cellular gene regulation and extra-cellular interactions in the P22 
mouse brain.
A. SCRIPro identified 10 clusters on mouse brain spatial ATAC-RNA-seq (RNA).

B. Heatmap of spatial variable TR clustering by 6 cell type regions.

C. SCRIPro activity score of selected marker TR in spatial.

D. SCRIPro predicts Sox2 and Mef2c target genes then builds GRNs, and utilizes these target genes for GO analysis.

E. Wasserstein distance of Ligand and Notch1 receptor in different regions.

Page 16 of 26Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae466/7716542 by guest on 19 July 2024



Article short title

4 Discussion
Constructing high-resolution GRNs from extensive single-cell and 
spatial transcriptomics data is crucial for understanding gene 
regulation mechanisms in cell fate determination and disease 
development. In this study, we developed SCRIPro, a rapid and user-
friendly method that accurately predicts GRNs. SCRIPro addresses 
the challenge of sparse signals at the SuperCell(Littman, et al., 2023) 
resolution by accounting for both expression and spatial similarity. 
Notably, SCRIPro includes a chromatin reconstruction step designed 
for scRNA-seq and spatial transcriptomics datasets without paired 
ATAC-seq data, significantly enhancing its usability. Through in-
silico deletion TR analyses using a comprehensive TR ChIP-seq 
reference, SCRIPro outperforms existing motif-based methods in 
various systems, including human B-cell lymphoma, mouse hair 
follicle development, mouse developing embryos, and brain at P22. 
We anticipate that SCRIPro will be widely utilized by researchers to 
identify crucial TRs underlying novel differentiation and disease 
mechanisms.

SCRIPro integrates rich information from external ChIP-seq datasets, 
addressing a significant limitation in most existing GRN inference 
methods for single cells, such as SCENIC(Aibar, et al., 2017), 
SCING(Littman, et al., 2023), chromVAR(Schep, et al., 2017), 
SCENIC+(Bravo González-Blas, et al., 2023), Dictys(Wang, et al., 
2023), and CellOracle(Kamimoto, et al., 2023), which rely heavily on 
motif information. Using only motif information can lead to a loss of 
cell-type-specific secondary TF binding in about 45% of cases, as 
estimated from ENCODE data. By including external ChIP-seq 
datasets, SCRIPro significantly enhances GRN inference 
performance, similar to recent methods using pre-trained neural 
networks from ENCODE data(2012). Moreover, SCRIPro is 
optimized for single-cell datasets. Unlike the LISA method, which 
was designed for bulk RNA-seq data and shows poor performance 
when applied directly to single-cell multi-ome data, SCRIPro uses the 
SuperCell strategy to overcome data sparsity, prunes targets using 
TR-TG expression correlation, and improves reference quality with 
stringent QC filters. These optimizations result in significantly 
improved performance compared to the existing LISA method. 
SCRIPro also offers flexibility with variable input data. For 
transcriptomic-only data, it uses strategies similar to LISA to 
reconstruct chromatin landscapes from bulk DNase/H3K27ac 
references. For epigenomic-only data, it employs SCRIP(Dong, et al., 
2022) to infer potential regulators. For multi-omics data, SCRIPro 
aligns and uses matched or paired epigenome datasets as the 
chromatin landscape. Additionally, SCRIPro considers spatial 
adjacency when generating SuperCells, providing a robust and 
flexible solution for GRN inference(Yuan and Duren, 2024) across 
different single-cell modalities.

Despite its current superiority over existing methods, SCRIPro has 
some limitations.  Its performance relies heavily on the quality of 
public ChIP-seq datasets, which can affect its robustness. To address 
this, SCRIPro integrates motif scanning results into the TR reference 
to mitigate the reduction in TR reference coverage after filtering out 
low-quality datasets. Furthermore, the rapid development of single-
cell/spatial epigenomics technologies such as sciATAC-

seq3(Domcke, et al., 2020), sciMAP-ATAC(Thornton, et al., 2021), 
and some multiome epigenomics technologies such as Paired-
Tag(Zhu, et al., 2021), scCUT&Tag-pro(Zhang, et al., 2022) and 
DOGMA-seq(Mimitou, et al., 2021), accelerates the accumulation of 
high-quality epigenome data in the field. SCRIPro aims to incorporate 
these data into the chromatin and TR reference, expanding coverage 
to more cell types and improving performance, particularly on rare 
cell types. While SCRIPro adeptly predicts TRs at a SuperCell 
resolution, its precision at the single-cell level is still being 
established due to challenges related to background noise and data 
quality. To overcome these limitations, we are exploring the use of 
machine learning models, such as diffusion and autoencoders, to 
improve the quality of single-cell and spatial-omics data, thereby 
enhancing both the resolution and accuracy of TR prediction. Finally, 
the cellular spatial locations from spatial-omics data are essential for 
understanding in situ gene expression regulation, cell interactions, and 
signal transduction within spatial microenvironments.  Currently, 
SCRIPro calculates upstream signaling pathways by constructing 
spatial GRNs and filtering ligand-receptor (L-R) pair expressions. 
However, this approach is limited by the coverage of spatial-omics 
data and the number of L-R pairs in the database.  Future 
development integrating GRNs, protein-protein interactions (PPI), 
and L-R co-occurrence is expected to significantly increase the 
connections between intracellular GRNs and extracellular cell-cell 
interactions (CCIs).

In summary, SCRIPro is a promising tool that enables researchers to 
leverage extensive single-cell or spatial transcriptomics data to 
identify driver TR regulations, with or without paired epigenome 
information. It facilitates the interpretation of GRNs across diverse 
cell types, cellular trajectories, and spatial domains.
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