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MOTIVATION Cell-type annotation is a crucial step for interpreting cell-type functions in scRNA-seq data
processing. There are two main methods for cell-type annotation, marker based and reference based.
Reference-based methods transfer cell-type labels from reference datasets to query datasets using ma-
chine learning techniques, resulting in improved accuracy and broader applications. However, challenges
remain, including difficulty in leveraging large-scale public data, cell number imbalances, batch effects, and
reliance on reference data quality. Addressing these challenges is essential to improve the accuracy of cell-
type annotation and enable the full potential of scRNA-seq data.
SUMMARY
The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various hu-
man cell populations. However, achieving accurate cell-type annotation using public references presents
challenges due to inconsistent annotations, batch effects, and rare cell types. Here, we introduce SELINA
(single-cell identity navigator), an integrative and automatic cell-type annotation framework based on a
pre-curated reference atlas spanning various tissues. SELINA employs a multiple-adversarial domain adap-
tation network to remove batch effects within the reference dataset. Additionally, it enhances the annotation
of less frequent cell types by synthetic minority oversampling and fits query data with the reference data us-
ing an autoencoder. SELINA culminates in the creation of a comprehensive and uniform reference atlas, en-
compassing 1.7 million cells covering 230 distinct human cell types. We substantiate its robustness and su-
periority across amultitude of human tissues. Notably, SELINA could accurately annotate cells within diverse
disease contexts. SELINA provides a complete solution for human single-cell RNA-seq data annotation with
both python and R packages.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) can profile thousands of

cells to reveal heterogeneity within complex tissues. The key step

in scRNA-seq data processing is cell-type annotation, which is vi-

tal for interpreting function features for certain cell types and is

required formany downstreamanalyses, including trajectory anal-

ysis or cell-cell interactions. Cell-type annotation methods can be

roughly divided into two categories. Marker-basedmethods such

as Garnett1 and SCINA2 rely on clustering performance and

the quality of cell-type-specific marker genes. In contrast, refer-

ence-based methods, such as scmap,3 scPred,4 SingleR,5

CHETAH,6 SingleCellNet,7 ACTINN,8 mtSC,9 Cell BLAST,10

CellO,11 scCATCH,12 scMatch13 scDeepSort,14 and CellTypist15

transfer cell-type labels from reference datasets to query data-

sets using various machine learning techniques. As the refer-

ence-based methods do not require prior knowledge,16 they

show improved accuracy and broader applications compared to

marker-based methods with the continuous accumulation and

increasing throughput of scRNA-seq datasets.

Although reference-based methods have the above advan-

tages in cell-type annotation, several challenges remain to be

resolved. First, current tools are often designed for transferring

cell-type assignments between single reference data and single

query data; hence, they cannot leverage the wealthy information

hidden in the enormous public data. Second, the cell numbers of

different cell types are often imbalanced; therefore, the minority

cell types are always ignored in the modeling process. Third, the

underlying batch effects between reference data and query data

are often overlooked, which may hinder accurate label transfer.

Last, all these methods heavily rely on the quality and quantity

of reference datasets. ScCATCH was pre-trained on cell-type-

specific markers. SingleR, CellO, and scMatch provided refer-

ences from bulk RNA-seq samples. ScDeepSort and CellTypist

only provide scRNA-seq references with limited lineages such

as immune cells or embryonic cells. Even though great efforts

in systematically collecting and curating public datasets have

been made to build scRNA-seq data portals that involve millions

of cells, which have spawned Human Cell Atlas17 (HCA), Animal

Cell Atlas18 (ACA), Single Cell Portal from the Broad Institute,19

Human Cell Landscape20 (HCL), and Single Cell Expression

Atlas from European Bioinformatics Institute21 (EMBL-EBL), a

uniform and comprehensive reference atlas is still lacking due

to the inconsistent annotation and large batch effects between

datasets.

To address these challenges, we built a comprehensive sin-

gle-cell transcriptomics data atlas consisting of 35 human tis-

sues across 7 different sequencing platforms from 136 datasets.

The datasets have been curated and made accessible through

the HUSCH22 website. Based on 1,706,710 uniformly processed

cells from 230 cell types, we proposed an algorithm that can

effectively utilize multiple datasets for single-cell assignment.

It applies the synthetic minority oversampling technique23

(SMOTE) to boost the number of rare cell types and employs

multi-adversarial domain adaptation24 (MADA) to update the pa-

rameters of the supervised deep learning framework in the pre-

training stage. Furthermore, it utilizes an autoencoder to adap-

tively adjust the pre-trained parameters based on the distribution
2 Cell Reports Methods 3, 100577, September 25, 2023
of query data. We demonstrated the power of SELINA (single-

cell identity navigator) in batch removal and systematically eval-

uated the performance of SELINA with existing tools on 95 data-

sets from 17 tissues. In addition, we proved that SELINA could

take other unified databases as references by testing on data-

sets from the Allen Institute.25–27 Finally, the benchmark in mul-

tiple disease scenarios demonstrated that SELINA could anno-

tate cell types with a higher accuracy than the mainstream

methods. The comprehensive cell-type references of SELINA

and its superior ability in transferring annotations pave the way

for users to accurately annotate single cells.

RESULTS

Overview of SELINA
The SELINA workflow is mainly composed of two steps: refer-

ence construction and cell-type prediction. For reference con-

struction, public scRNA-seq datasets were collected frommulti-

ple databases and processed with a standardized pipeline from

MAESTRO28 including quality control, principal component anal-

ysis (PCA), batch removal within each dataset, unsupervised

clustering, and annotation based on the original labels or cell-

type-specific gene markers from the original study (Figure S1A).

Next, the inconsistent annotations across datasets were manu-

ally unified and assigned to the major lineage and minor lineage

based on the Cell Ontology29 and literature (Figure S1B). After

annotation unification, all datasets within a tissue were merged,

and the batch effects across datasets were removed using har-

mony.30 For each lineage, the outlier cells were removed to cor-

rect the potential misannotations. Finally, the curated cell types

were organized into a cell-type ontology tree.

Based on the uniformed reference, we developed a cell-type

prediction algorithmconsisting of three steps: cell-type balancing,

pre-training, and fine-tuning. Usually, the classifier will achieve a

higher training accuracy at the cost of theminority cell types being

misclassified. Therefore, to increase the sensitivity of the classifier

to the minority cell types, SELINA utilizes SMOTE23 to generate

synthetic samples to increase the weights of the minority cell

types. Then, SELINA takes datasets from one tissue as input and

employs aMADA-based network24 to obtain a pre-trained model.

By training the supervised deep learning framework in an adversa-

rialway, theunderlyingcommon informationof the samecells from

different sequencingplatforms isuncovered.To further remove the

batch noise between the reference and query data, an autoen-

coder is used to adaptively fine-tune the pre-trained parameters

according to the distribution of query data. Finally, the labels

from reference datasets are transferred to the query data based

on the fully trained model (Figure 1).

SELINA provides a large-scale and well-annotated
human single-cell expression reference
A total of 1,706,710 cells from 136 datasets were collected to

build the single-cell transcriptomic data portal, which covered

230 human cell types and 7 different sequencing platforms

(Table S1). The reference atlas was expanded based on HCL20

to include more datasets from other sequencing platforms. All

the datasets were categorized into 35 major tissues according

to the definition in HCL. We first summarized the features



Figure 1. Overview of SELINA

SELINA consists of two sections: reference construction and cell-type prediction. Public datasets were collected from various databases and uniformly pro-

cessed based on a two-step approach containing within datasets processing and across datasets unification. For each tissue, a well-organized cell-type

classification tree was built, and the expression profiles weremerged as the annotation algorithm input. The algorithm consists of three steps: cell type balancing,

training, and fine-tuning. First, the rare cell types from the merged training data are oversampled. Second, the training data is pre-trained with a supervised deep

learning framework containing a gradient reversal layer. Third, the parameters of the pre-trained model are adjusted according to the distribution of query data.

Finally, the adjusted model takes query data as input and assigns the cells with cell types from reference data.
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of the datasets in the reference. The blood (n = 14), intestine

(n = 14), and bone marrow (n = 13) tissues have the largest

dataset numbers (Figure 2A). Blood and bone marrow tissues

also have the largest number of cells (Figure S2B), indicating a

better characterization of immune cells for our reference. The

kidney has the most abundant cell types (Figure S2A). Impor-

tantly, 27 out of the 35 tissues have two or more datasets in

the reference, suggesting good coverage and depth of our refer-

ence. The majority of the data was generated using 10x geno-

mics and Microwell-seq, which included 60 and 58 datasets,

respectively. Data from Smart-seq, InDrop, Drop-seq, and

snDrop-seq only account for a small proportion of all the data-

sets (Figure 2A).

For each tissue, the inconsistent cell-type names between

different datasets were unified and subsequently divided into

the major level and minor level based on the literature and the

Cell Ontology.29 Taking the cell-type names from the liver as

an example, the major lineage has 14 different cell-type cate-

gories, and only dendritic cells (DCs), endothelial cells, and

epithelial cells have sublineages (Figure 2B). Aggregating all tis-

sues together, we constructed a comprehensive human cell-

type ontology tree to describe the parent-child relationships of

cells within scRNA-seq data. By incorporating and curating cell

types from published studies, SELINA affords users a more uni-

fied standard that dictates cell-type landscapes in the scRNA-

seq data and organizes this landscape for annotating input

scRNA-seq data.
SELINA combines SMOTE, MADA, and an autoencoder
to improve the annotation accuracy
The annotation algorithm in SELINA comprises three steps,

including cell-type balancing, pre-training, and fine-tuning (Fig-

ure 2C). In most classification algorithms, the classifier will

misclassify the minority samples to achieve a higher training ac-

curacy with a lower learning cost. Especially, when the minority

samples exist both in the training and testing data, it is hard for

the classifier to correctly assign the minority samples in testing

data as the training samples only afford limited information.

Data augmentation techniques can resolve the problem of data

imbalance, of which SMOTE23 is a classical algorithm. The

scRNA-seq data exhibited a strong category imbalance. In our

reference, the minority cell types only contain dozens of cells,

while the majority cell types can be characterized by tens of

thousands of cells. Therefore, SELINA first adopts SMOTE to

oversample the minority cell types. For each cell in a pair of

randomly selected cells from the rare cell types, SELINA multi-

plies its gene expression vector by a random weight and then

sums the pair of weighted vectors to obtain a synthetic cell.

Colloquially, the generated cell is the linear combination of the

original cells and locates randomly on the line connecting the

pair of cells. This process will proceed until the cell numbers of

rare cell types reach the same magnitude as the majority of

cell types or are not less than 1,000.

In the pre-training phase, SELINA applies MADA24 to remove

the batch noise induced by different sequencing platforms.
Cell Reports Methods 3, 100577, September 25, 2023 3
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Figure 2. Reference data and annotation algorithm of SELINA

(A) Dataset number of different tissues collected in SELINA reference. Different colors represent different sequencing platforms.

(B) Cell-type classification tree from the liver with two levels of annotations.

(C) Annotation algorithm of SELINA. First, the rare cell types are oversampled with SMOTE. The green dots are cells from the original minority cell types, and the

orange dots are the synthetic cells. The balanced data are trained with a MADA-based pre-training framework. Each bar represents one layer of the model. Then

the pre-trained model is fine-tuned using an autoencoder. The feature extractor and cell-type discriminator are extracted to construct the encoder, and the

decoder is randomly initialized with a structure symmetrical to that of the encoder. The decoder is trained with the encoder fixed; subsequently, the encoder is

trained with the decoder fixed. Finally, the decoder is removed, and the encoder is used to classify query cells.
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The architecture of the pre-training framework consists of three

components: a feature extractor, a cell-type discriminator, and a

sequencing platform discriminator. The feature vector generated

by the feature extractor will flow into the cell-type discriminator

and platform discriminator simultaneously. Unlike a conventional

adversarial neural network,31 the platform discriminator in our

pre-training framework contains multiple classifiers of which

the number is equal to the cell types. For a certain platform clas-

sifier, the input feature vector will be multiplied by the probability

of the input cell being assigned as the cell type paired with this

platform classifier, and the probability is calculated by the cell-

type discriminator. During the backward propagation of platform

predicting errors, the gradient of the feature vector will be

reversed so that the feature extractor is trained to maximize

the loss of the platform discriminator, while the platform discrim-

inator is trained to minimize the loss. Thus, as the training pro-

ceeds, features generated by the feature extractor become

worse for the platform discriminator to classify; however, even

though the difference between the input features from different

platforms is slight, the platform discriminator can always

manage to distinguish the platform sources until the difference

is nearly eliminated. This strategy can enable fine-grained align-
4 Cell Reports Methods 3, 100577, September 25, 2023
ment of expression distributions from different sequencing plat-

forms by capturing the batch information of each cell type sepa-

rately and training the feature extractor with the platform

discriminator in an adversarial way.

In theoriginal applicationscenarioofMADA, thedomaindiscrim-

inator isused tohelpwithextracting thecommon featuresbetween

referencedata andquery data. However, in SELINA,MADA isused

to uncover the common information between different platforms

within the reference data. Therefore, the difference between refer-

ence data and query data still exists. To reduce such differences,

an autoencoder is employed in the fine-tuning step. The encoder,

combining the feature extractor and cell-type discriminator of the

pre-trained model, has learned the transformation from a large

amount of reference data. By contrast, the decoder still needs to

be adjusted due to the random initialization of the parameters.

SELINA first freezes the encoder and updates the parameters of

the decoder. Freezing the encoder can prevent the parameters of

the encoder from changing considerably so that the learned trans-

formation in thepre-trainedmodel canbewell preserved.Once the

total loss decreases to convergence, SELINA will freeze the

decoder and then update the parameters of the encoder. The

reconstruction loss will be further decreased after encoder training
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Figure 3. Evaluation of computational techniques used in SELINA

(A) The prediction results of rare cell types with SMOTE (SMOTE) and without SMOTE (Base) synthesizing new cells in reference data. The heights of the bars and

linkage lines represent the cell number. The bars on the left are the original labels provided by the corresponding paper, and the bars on the right represent the

prediction results of SELINA. PL, periportal liver sinusoidal endothelial cell; PE, portal endothelial; CVL, central venous liver sinusoidal endothelial cell.

(B) Bar plot for the F1 scores of rare cell types with SMOTE and without SMOTE (Base) oversampling training data before pre-training.

(C) Boxplot for the LISI scores of cells that are specific to one sequencing platform (top) and common cells between different platforms (bottom). Original

embedding represents dimension reduction results from PCA. Feature extractor represents the results from the output layer of the feature extractor. Cell-type

(legend continued on next page)
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so that the encoder is shifted based on the distribution of query

data, which can reduce the batch noise between reference data

and query data.

Data augmentation for rare cell types and batch removal
in both data integration and querying processes improve
annotation accuracy
To validate the improvement of SMOTE in rare cell-type anno-

tation, we selected 4 datasets from the liver as reference

data, including 15,859 cells,20,32 and 1 dataset as query

data.33 Seven cell types with limited cell numbers in the training

data were defined as rare cell types, including CD4T (n = 98),

plasma (n = 462), mast (n = 12), pDC (n = 32), cholangiocyte

(n = 391), PL (periportal LSEC, n = 358), and PE (portal endothe-

lial cell, n = 212), and these cell types were also presented in the

query data. The implementation of SMOTE increased the num-

ber of rare cell types that were correctly assigned. Before

SMOTE, almost all CD4T cells were misannotated as CD8T

cells, and no mast cells were correctly annotated (Figure 3A).

Nearly 1/3 of CD4 T cells and half of the mast cells were

correctly annotated after implementing SMOTE (Figure 3A).

The distribution of synthetic cells may still be slightly different

from the query cells due to the limited number of original cells

and the randomness of the synthesis process. Therefore,

the enhancement contributed by SMOTE might be limited

compared to collecting more data. We calculated the F1 of

these cell types and found a large improvement except for

the PL, of which some were probably misannotated in the refer-

ence (Figure 3B). To test the effectiveness of oversampling, we

benchmarked SELINA with and without SMOTE in three tissues:

intestine, stomach and liver. For each tissue we selected the

dataset with the most abundant cell types as the test data,

and all the remaining datasets within the tissue were used as

reference data. We then performed downsampling on each

cell type in the reference data with a gradient proportion

(10%, 20%, 30%, 40%, and 50%). SMOTE was utilized to over-

sample each downsampled dataset, and we recorded the

benchmark results after the oversampling. Comparing the re-

sults with and without oversampling, we found that most cell

types achieved more accurate predictions after oversampling

(Figures S2D–S2F). In conclusion, SMOTE can remedy the un-

desirable training results and overfitting of the classifier caused

by the limited number of training cells.
classifier shows the results from the first hidden layer of the cell-type classifier

calculated by UMAP. The sequencing platform was taken as the batch informatio

lower and upper hinges represent the 25th and 75th percentiles, respectively.

*p < 0.05, **p < 0.01, ***p < 0.001.

(D–F) 2D-UMAP representation of liver data based on dimension reduction result

top and bottom show the sequencing platform labels and cell-type labels for eac

(G) Boxplots for LISI scores of reference and query cells in the liver. Graph on th

query data. The graph on the bottom shows the LISI scores of the cell types that ar

based on the output from the first hidden layer of the pre-trained model and tun

information when calculating the LISI scores. Each dot represents the LISI score o

sided, *p < 0.05, **p < 0.01, ***p < 0.001.

(H) Mean accuracy and MacroF1 (3 repeats) of different strategies. Base represe

model was used without fine-tuning. +SMOTE represents the results when SMOT

results when SMOTE and autoencoder were both implemented. Each dot repre

pairwise Wilcoxon rank-sum test, one-sided, *p < 0.05, **p < 0.01, ***p < 0.001.
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To further confirm thatSELINAcaneliminate batcheffects exist-

ing in reference data, we applied uniform manifold approximation

and projection34 (UMAP) to display the features in the output

layer of the feature extractor and the first hidden layer of the

cell-type discriminator. We also used local inverse Simpson’s in-

dex (LISI)30 to quantitively assess the batch effects (see STAR

Methods). A higher LISI score means cells are well mixed across

different platforms. Ideally, after batch removal for sequencing

platforms, the same cell types sequenced by different platforms

will be clustered closer, and the cell types that are unique to spe-

cific platforms will be further separated. Thus, we calculated the

LISI scores for platform-common cells and platform-specific cells

separately. A total of five liver datasets20,32,33 were merged and

used in the following batch removal evaluation. Both the feature

extractor transformationand thecell-typeclassifier transformation

increased the LISI scores of platform-common cells and

decreased the LISI scores of platform-specific cells (Figure 3C).

Cells of the same cell type from different platforms were clustered

closer compared to the original embedding, suggesting that with

thecell-type-specificplatformdiscriminators, the featureextractor

can uncover the underlying common features for each cell type.

Ourpre-training framework significantly removed thebatcheffects

and also showed better separation in similar cell types like CD4+

T cells, CD8+ T cells, and NK cells compared to the conventional

batch correction tool Harmony30 (Figures 3D–3F and S3A).

We next testedwhether fine-tuning using an autoencoder could

remove the batch effects between the reference data and query

datausing the liverdata.Wecalculated theLISI scoresofcell types

possessed by both the reference and query data (QR-common)

and cell types that are unique to reference or query data (QR-spe-

cific) separately. The increased LISI scores showed that common

cell types from reference data and query data mixed better, and

the decreased LISI scores showed that QR-specific cell types

clustered more independently after fine-tuning (Figures 3G, S3B,

and S3C). Similar results were also observed on two query data-

sets from the lung and intestine, indicating the necessity of the

fine-tuning step (Figure S3D).

Finally, we investigated whether the performance improve-

ment of oversampling and fine-tuning is robust and tested it on

three different tissues, including the bladder, brain, and liver.

Each time, we selected one dataset as query data, and the re-

maining datasets were merged as reference data. Accuracy

and MacroF1 are gradually improved with the implementation
. Each dot corresponds to the LISI score of one cell. Cell coordinates were

n when calculating the LISI scores. Center lines indicate the median value, and

p values were determined by pairwise Wilcoxon rank-sum test, one-sided,

s from PCA, cell-type classifier, and PCA followed by harmony. Graphs on the

h cell respectively.

e top shows the LISI scores of the common cell types between reference and

e unique to reference or query data. Cell coordinates were calculated by UMAP

ed model, respectively. The cell source (reference/query) was taken as batch

f one cell. p values were determined by pairwise Wilcoxon rank-sum test, one-

nts the situation in which the data were not oversampled, and the pre-trained

E was additionally implemented to oversample rare cell types. +AE shows the

sents the testing result of one dataset (n = 17). p values were determined by
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of SMOTE and autoencoder (Figure 3H). We took the test in the

liver as an example to show how the metrics of each cell type

changedwith the gradual implementation of SMOTEand autoen-

coder, and we found a higher improvement for the rare cell types

(Figure S3E). Taken together, these results demonstrate that the

techniques implemented in SELINA can help to utilize multiple

reference datasets to annotate unlabeled datasets, and the

improvement is consistent and robust across different tissues.

SELINA outperforms other existing tools in the
comprehensive performance evaluation
We systematically compared the performance of SELINAwith ex-

isting annotation tools and traditional machine learning methods

including support vector machine (SVM), random forest (RF), and

k-nearestneighbor (kNN)usingdata fromasinglesequencingplat-

form and multiple sequencing platforms respectively. The single-

platform evaluation was performed on 9 tissues containing multi-

ple datasets from the same sequencing platform, including

479,740 cells. The multi-platform evaluation was carried out on

14 tissues containing datasets from multiple sequencing plat-

forms, covering 658,270 cells (Table S2). For each tissue, one da-

taset was picked out as query data, while the others weremerged

as the reference. The training and testing process was repeated

until each dataset was tested. The average accuracy and

MacroF1 of all datasets in one tissue represent the performance

of one certain method. SELINA achieves the best accuracy and

MacroF1 in the evaluation on both the single-platform and multi-

platform data. For single-platform tests (Figure 4A), SELINA is

the top method with an average accuracy of 61.51%, followed

by SELINA-Base (60.57%), ACTINN8 (59.35%), SingleCellNet7

(58.34%), mtSC9 (58.01%), scibet35 (57.97%), CellTypist

(57.28%), SVM (57.24%), Seurat (56.24%), SingleR5 (55.45%),

RF (55.10%), CelliD (48.87%), scmap3 (47.43%), kNN (46.00%),

and Cell BLAST10 (42.51%), and SELINA also performs best with

the highest MacroF1 (0.5126), followed by SELINA-Base

(0.4857), mtSC (0.4808), scibet (0.4808), ACTINN (0.4739), Seurat

(0.4694),SVM (0.4633),SingleCellNet (0.4574),CellTypist (0.4510),

CelliD (0.4409), SingleR (0.4406), RF (0.3937), scmap (0.3492),Cell

BLAST (0.3363), and kNN (0.3356).

In terms of the multi-platform evaluation, SELINA ranks

first with a highest average accuracy (64.42%), followed by

SELINA-Base (62.28%), ACTINN (61.31%), SingleCellNet

(61.08%), CellTypist (60.99%), mtSC (59.76%), SVM (58.76%),

scibet (58.46%), RF (56.20%), Seurat (55.71%), singleR

(53.97%), CelliD36 (52.41%), scmap (52.15%), kNN (48.67%),

and Cell BLAST (42.99%). Besides, SELINA is the top-ranked

method with an average MacroF1 of 0.5082, followed by

mtSC (0.4811), SELINA-Base (0.4785), ACTINN (0.4678), scibet

(0.4528), CellTypist (0.4487), SingleCellNet (0.4476), SVM

(0.4365), CelliD (0.4238), Seurat (0.4105), SingleR (0.4051),

scmap (0.3750) RF (0.3710), kNN (0.3169), and Cell BLAST

(0.3118). Specifically, for the multi-platform evaluation, SELINA

ranks first in 9 tissues and second in 1 tissue, and in terms of

MacroF1, SELINA ranks first in 11 tissues and second in 2 tis-

sues (Figure 4B). Both the base version and the full version of

SELINA showed improved performance over existing methods,

with the full version incorporating the cell balancing and query

fine-tuning modules ranking the best, indicating the importance
of adding these features. The performance varies between tis-

sues, which is probably caused by the different overlapping ra-

tios of cell types in different tissues (Figure S4A, see STAR

Methods). The detailed performance comparisons for 5 repre-

sentative tissues are shown in Figures S4B–S4F. All these results

suggest the robustness and superiority of SELINA in annotating

unlabeled datasets.

The 5-fold cross-validation was employed in the single-sample

evaluation. Since all individual parts used in one test were from

the same sample and had minimal batch effects, which limited

the potential for deep learning methods to demonstrate their ad-

vantages on batch removal, many non-deep learning methods

haveshownsignificant improvements inperformance (FiguresS4G

and S4H). SELINA performs well in the single-sample testing with

an average accuracy of 94.03%.

Moreover, we compared the training time and querying time of

SELINA with the other tools. As SELINA, ACTINN, and mtSC are

deep learning-basedmethods, they were trained with aGPU and

tested using aCPU, and the rest of themethodswere trained and

tested using the same CPU as the deep learning model tests

used. We set various reference cell numbers and query cell

numbers to investigate the dynamic change in time consumption

and found it was positively correlated with the cell number in all

methods. Compared to other methods, SELINA exhibits moder-

ate computational efficiency. It takes SELINA approximately

3 min to train a model on a dataset with 25,000 cells and less

than 1 min to fine-tune the parameters on a dataset with

10,000 cells (Figures 4C and 4D). Additionally, the fine-tuning

step can be largely accelerated by the GPU, with amore obvious

effect as the cell number increases (Figure S4I). In conclusion,

SELINA can realize more accurate annotation than published

tools with an acceptable runtime.

Expandable references of SELINA
The traditional strategy took a single annotated dataset as

reference data. With the explosion of data volume, tools utiliz-

ing integrated information from multiple datasets have now

become mainstream. Since the cell types and cell numbers

within a single dataset may be limited, the single reference

cannot afford sufficient information for a model to learn. To

ensure that the effective integration of multiple references can

improve the annotation result, we evaluated the performance

of SELINA with an increasing number of reference datasets

on the pancreas, liver, and lung tissues. (Figures 5A, S5A,

and S5B). The performance improves stably as the training

data continues to increase.

To further prove that SELINA supports the use of other harmo-

nized scRNA-seq databases or user custom references, we

tested SELINA on 2 datasets from the Allen Brain Atlas, of which

one includes single-nucleus RNA-seq (snRNA-seq) data from

76,533 total nuclei derived from 2 postmortem human brain

specimens using the 10x platform, and the other includes

snRNA-seq data from 49,495 nuclei across multiple human

cortical areas profiled with Smart-seq. We selected cell types

with cell numbers larger than 1,000, which are 13 subsets of

excitatory neurons, 5 subsets of inhibitory neurons, and 1 subset

of oligodendrocyte. After benchmarking multiple tools using

these data, SELINA ranks second out of the 9 tested tools with
Cell Reports Methods 3, 100577, September 25, 2023 7



0.64 0.62 0.61 0.61 0.61 0.60 0.59 0.58 0.56 0.56 0.54 0.52 0.52 0.49 0.43

0.69 0.68 0.66 0.64 −− 0.64 0.60 0.60 0.59 0.42 0.36 0.49 0.44 0.53 0.31

0.33 0.33 0.32 0.33 0.28 0.30 0.29 0.32 0.27 0.31 0.25 0.23 0.28 0.26 0.14

0.54 0.48 0.49 0.47 −− 0.46 0.47 0.36 0.46 0.45 0.40 0.33 0.37 0.44 0.18

0.53 0.53 0.52 0.47 −− 0.47 0.49 0.30 0.48 0.50 0.20 0.44 0.34 0.32 0.39

0.78 0.76 0.75 0.75 −− 0.76 0.74 0.70 0.71 0.57 0.70 0.68 0.69 0.62 0.42

0.68 0.67 0.65 0.66 0.6 0.63 0.62 0.64 0.62 0.66 0.57 0.63 0.54 0.54 0.58

0.79 0.77 0.75 0.73 0.75 0.76 0.70 0.72 0.73 0.65 0.65 0.66 0.62 0.58 0.48

0.52 0.53 0.52 0.46 0.5 0.51 0.52 0.64 0.42 0.46 0.60 0.50 0.53 0.36 0.35

0.58 0.59 0.59 0.56 0.67 0.54 0.61 0.58 0.58 0.42 0.53 0.27 0.32 0.62 0.56

0.92 0.90 0.89 0.85 0.9 0.91 0.85 0.85 0.73 0.73 0.82 0.82 0.86 0.76 0.48

0.58 0.49 0.52 0.49 0.46 0.53 0.44 0.57 0.46 0.44 0.52 0.39 0.38 0.43 0.32

0.45 0.40 0.39 0.52 0.38 0.32 0.47 0.29 0.44 0.53 0.49 0.41 0.47 0.46 0.41

0.98 0.92 0.92 0.95 0.95 0.93 0.83 0.95 0.76 0.97 0.84 0.84 0.94 0.58 0.82

0.66 0.66 0.62 0.67 0.61 0.62 0.59 0.66 0.63 0.69 0.63 0.64 0.51 0.31 0.58

0.51 0.48 0.48 0.47 0.45 0.45 0.45 0.44 0.42 0.41 0.41 0.38 0.37 0.32 0.31

0.61 0.59 0.58 0.57 0.53 −− 0.50 0.50 0.44 0.40 0.39 0.34 0.40 0.40 0.26

0.28 0.27 0.27 0.26 0.24 0.24 0.26 0.22 0.20 0.22 0.17 0.21 0.22 0.18 0.13

0.41 0.35 0.37 0.35 0.28 −− 0.32 0.32 0.28 0.37 0.32 0.26 0.29 0.26 0.17

0.40 0.37 0.39 0.38 0.23 −− 0.33 0.35 0.36 0.35 0.18 0.24 0.31 0.18 0.29

0.65 0.63 0.63 0.61 0.59 −− 0.59 0.59 0.54 0.39 0.57 0.47 0.50 0.44 0.30

0.48 0.49 0.45 0.44 0.47 0.39 0.43 0.42 0.44 0.47 0.37 0.36 0.36 0.29 0.38

0.73 0.71 0.68 0.66 0.68 0.65 0.61 0.60 0.56 0.55 0.58 0.54 0.55 0.41 0.42

0.37 0.35 0.36 0.37 0.37 0.34 0.33 0.34 0.33 0.27 0.33 0.34 0.29 0.27 0.24

0.39 0.32 0.35 0.36 0.36 0.38 0.36 0.37 0.30 0.28 0.36 0.23 0.29 0.36 0.30

0.74 0.72 0.72 0.70 0.64 0.67 0.66 0.64 0.68 0.55 0.60 0.65 0.54 0.55 0.35

0.54 0.51 0.50 0.48 0.51 0.44 0.45 0.46 0.37 0.40 0.47 0.24 0.33 0.34 0.30

0.18 0.16 0.16 0.15 0.13 0.15 0.21 0.20 0.21 0.21 0.21 0.20 0.16 0.18 0.20

0.98 0.93 0.92 0.91 0.95 0.95 0.95 0.82 0.87 0.97 0.81 0.94 0.72 0.44 0.81

0.35 0.33 0.33 0.31 0.35 0.28 0.27 0.28 0.35 0.33 0.31 0.21 0.24 0.13 0.22

DL
nonDL

0.51 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.45 0.44 0.44 0.39 0.35 0.34 0.34

0.63 0.60 0.62 0.63 0.58 0.60 0.57 0.52 0.54 −− 0.55 0.48 0.27 0.43 0.43

0.50 0.49 0.50 0.54 0.49 0.52 0.45 0.46 0.42 −− 0.40 0.40 0.38 0.42 0.33

0.33 0.32 0.20 0.23 0.31 0.30 0.25 0.32 0.34 0.29 0.14 0.28 0.13 0.16 0.07

0.30 0.29 0.24 0.30 0.28 0.25 0.29 0.25 −− 0.28 0.26 0.22 0.28 0.24 0.20

0.41 0.39 0.41 0.39 0.40 0.39 0.43 0.39 0.43 0.37 0.41 0.35 0.34 0.3 0.41

0.54 0.54 0.48 0.52 0.51 0.51 0.37 0.47 −− 0.55 0.46 0.37 0.44 0.37 0.29

0.74 0.68 0.73 0.67 0.67 0.71 0.67 0.64 0.59 0.64 0.66 0.60 0.49 0.61 0.57

0.56 0.48 0.49 0.45 0.44 0.48 0.47 0.46 0.45 0.46 0.47 0.33 0.28 0.21 0.28

0.38 0.38 0.38 0.36 0.37 0.21 0.37 0.36 0.35 0.31 0.33 0.29 0.37 0.3 0.26

0.75 0.69 0.78 0.68 0.68 0.73 0.75 0.70 0.5 0.63 0.74 0.62 0.52 −− 0.53

DL
nonDL

0.62 0.61 0.59 0.58 0.58 0.58 0.57 0.57 0.56 0.55 0.55 0.49 0.47 0.46 0.43

0.66 0.66 0.66 0.63 0.66 0.63 0.63 0.64 0.69 0.55 0.63 −− 0.48 0.53 0.48

0.71 0.70 0.68 0.69 0.68 0.66 0.62 0.65 0.70 0.59 0.65 −− 0.55 0.56 0.62

0.34 0.30 0.31 0.30 0.21 0.17 0.32 0.27 0.24 0.20 0.24 0.25 0.13 0.06 0.1

0.33 0.34 0.31 0.28 0.35 0.23 0.32 0.35 0.26 0.29 0.21 0.28 0.30 0.23 0.25

0.70 0.70 0.72 0.71 0.75 0.72 0.8 0.72 0.67 0.72 0.74 0.42 0.67 0.70 0.56

0.57 0.56 0.54 0.54 0.56 0.54 −− 0.39 0.57 0.53 0.50 0.57 0.51 0.29 0.47

0.83 0.81 0.79 0.77 0.79 0.82 0.71 0.76 0.83 0.76 0.77 0.71 0.60 0.70 0.69

0.49 0.49 0.49 0.51 0.46 0.65 0.44 0.49 0.36 0.57 0.42 0.49 0.48 0.34 0.44

0.65 0.62 0.57 0.56 0.49 0.52 0.63 0.58 0.45 0.52 0.52 0.46 0.31 0.46 0.23

0.86 0.88 0.87 0.84 0.87 0.86 0.68 0.88 0.86 0.81 0.83 0.74 0.70 0.72 −−

A

B

C D

Figure 4. Performance evaluation of SELINA and existing annotation tools

(A and B) The prediction accuracy and MacroF1 using datasets from the same sequencing platform (A) and multiple sequencing platforms (B) as reference. The

number in each cell represents the average performance of all tested datasets within one tissue. The top row shows the average performance of all tissues for

each method. The number of datasets included in each tissue is listed behind the tissue names.

(C) Mean training time (3 repeats) for increasing training cell numbers.

(D) Mean testing time (3 repeats) for increasing testing cell numbers.
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Figure 5. Expandable references of SELINA

(A) Performance evaluation of SELINA with an increasing number of datasets being used as a reference in the lung.

(B) Performance evaluation on datasets from the Allen Institute. Each dot represents the testing result of one dataset (n = 6).

(C and D) 2D-UMAP representation of two examples from the Allen Institute. Graphs on the left and right show the original annotation and prediction results,

respectively.
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an average accuracy of 93.32% and an average MacroF1

of 0.9336. ACTINN, Scibet, SingleCellNet, and SingleR also

achieve a higher accuracy and MacroF1 compared to scmap,

mtSC, CelliD, andCell BLAST (Figure 5B).We present two exam-

ples to show the annotation results of SELINA and compare

them with the original annotation. The high prediction accuracy

indicates the enormous capacity of SELINA in annotating

scRNA-seq datasets with more fine-grained cell types (Fig-

ures 5C, 5D, S5C, and S5D). In summary, increasing the number

of reference datasets can provide more comprehensive cell

types and expression information, which can be utilized by

SELINA to annotate datasets more accurately. Furthermore,

SELINA can also employ datasets from users or consortiums

with expert knowledge37–40 as references.
Application of SELINA in annotating disease datasets
The scRNA-seq technique is widely used in characterizing

mechanisms in the development of various diseases. Therefore,

we next investigate whether SELINA could be used to annotate

the cells in different disease scenarios. We constructed a refer-

ence using normal immune and tissue-specific cells and

compared the performance of SELINA with other annotation

tools in disease scenarios on type 2 diabetes (T2D),35 non-

small-cell lung carcinoma (NSCLC),36 and Alzheimer’s disease

(AD)37 datasets (Table S4). Cells in the disease datasets might

be annotated as unknown as they may have altered expression

levels compared to the normal status. A higher filtering threshold

will result in a higher percentage of cells being predicted as un-

known. For the T2D dataset, almost all cells were correctly
Cell Reports Methods 3, 100577, September 25, 2023 9



A B

C D

FE

G

H

I

Figure 6. Application of SELINA in annotating disease datasets

(A) The SELINA prediction results of T2D. The heights of the bars and linkage lines represent the cell number. The bars on the left are the original labels provided by

the corresponding paper, and the bars on the right represent the prediction results of SELINA.

(B) Performance of SELINA and other tools on T2D data with an increasing percentage of cells to be predicted as unknown.

(C) The SELINA prediction results of NSCLC.

(D) Performance of SELINA and other tools in NSCLC data with an increasing percentage of cells to be predicted as unknown.

(E) The SELINA prediction results of AD.

(F) Performance of SELINA and other tools in AD data with an increasing percentage of cells to be predicted as unknown.

(G–I) The percentage of correctly predicted cells in patients diagnosedwith different disease stages. For tests on T2D (G) and NSCLC (H), each dot represents one

patient. All stages are aligned in ascending order of disease stages.
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predicted (Figure 6A). SELINA ranked first out of five tools with

accuracy near 1 compared to ACTINN, mtSC, scmap, and Sin-

gleR (Figure 6B). For the NSCLC dataset, although a tiny portion

of immune cells was predicted incorrectly, the majority of other

cells had accurate predictions (Figures 6C and 6D). SELINA

also showed remarkably improved performance compared

to other tools under different thresholds in the AD dataset

(Figures 6E and 6F). These results collectively suggest that
10 Cell Reports Methods 3, 100577, September 25, 2023
SELINA could accurately annotate the cells in the disease

scenario.

The alteration of gene expression in disease-associated cells

might be correlated with their disease stages. To figure out

whether SELINA can track the expression difference in

diseased-associated cells, we chose the beta cells from T2D

data, malignant cells from NSCLC, and neuron cells from AD

to evaluate as they are the major abnormal cells in the
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corresponding disease.We first tested on one T2Ddatasetwith 5

patients. The HbA1c value is a measurement of the risk of devel-

oping type 2 diabetes. The proportion of accurately predicted

beta cells decreases further when the HbA1c value rises (Fig-

ure 6G). Then we tested SELINA’s performance on one NSCLC

dataset with 3 patients, which covers the tumor region and tu-

mor-adjacent region. A similar trend is observed, as the percent-

age of accurately predicted cells dropped during the progression

of the disease (Figure 6H). Finally, in the AD data, the percentage

of accurately predicted neurons also decreased along with the

Braak stage (Figure 6I). The above analyses suggest that

SELINA is sensitive to the disease stages and can accurately

tackle the difference between normal and diseased cells.

Additionally, we explore the possibility of using SELINA to

annotate the cells in different disease scenarios with disease

data as a reference. To distinguish between normal and diseased

cells, we added a cell source classifier and a few platform classi-

fiers on the basis of the original pre-training framework (Fig-

ure S6A). In addition, we adjusted the loss function so that the

parameter updatewill be first dominated byplatformbatchwithin

cell sources (normal/abnormal) and then by the batch in cell

types. We merged the datasets from T2D,35,38–40 AD,37,41 and

NSCLC,42 respectively (Table S4), and benchmarked using a

5-fold cross-validation strategy. Compared to the training with

only cell-type information, the added cell source classifier im-

proves prediction accuracy andMacroF1 for cell-type annotation

(Figure S6B). The improvement indicates that the cell source in-

formation can help SELINA to characterize cells from different

sources separately. Thus, the classifier can match the reference

and query cells of the same source more accurately. Next, we

compared SELINA with other annotation tools. The tools are

ranked by the average performance on three diseases, and

SELINA is the most accurate predictor for both cell sources and

cell types (Figures S6C–S6F).

Taken together, all the findings demonstrate that SELINA can

be effectively used to annotate datasets with diseases.

DISCUSSION

Substantial amounts of well-labeled human scRNA-seq data

have been generated in the public domain. Previous reference

data-based studies utilized various strategies to achieve auto-

matic annotation based on annotated scRNA-seq data. Howev-

er, existing algorithms do not solve the problems of imbalanced

cell types and batch effects between reference and query data-

sets. In addition, due to the huge amount of public scRNA-seq

data, a comprehensive reference atlas with uniformed cell types

is still not available. In this study, we developed an accurate deep

learning-based framework, SELINA, for single-cell assignment

along with a large-scale reference data portal covering

1,706,710cells and 35 tissues. SELINAcan handle the imbalance

of cell types existing in reference data using SMOTE. In addition,

SELINA can remove not only the batch effects across reference

datasets but also the batch noise between the query dataset

and the reference dataset. We systematically benchmarked the

performance of SELINA on 17 different human tissues and

demonstrated its superiority for accurate cell-type annotation

compared to existing tools. In our evaluation, the deep
learning-based methods, such as SELINA, ACTINN, and mtSC,

generally outperformed traditional machine learning-based

methods, suchasSVMandSingleCellNet, contradictingprevious

studies16,41 when the benchmark included more datasets and

cell types, and it is reasonable sincedeep learningmodels usually

have stronger nonlinear modeling ability, which can better mimic

the underlying function between the input and output when the

training data are more complex. We also confirmed that

SELINA can learn to classify cells from other unified databases,

which was validated using data from the Allen Brain Atlas.

Furthermore, we demonstrated that SELINA could be used to

annotate the cells in various disease scenarios. In conclusion,

our method, combined with the curated reference, provides a

one-stop solution for human scRNA-seq data annotation.

For reference-based approaches, the performance of data

annotationdependsheavily on thequality of the reference. There-

fore, we have invested huge efforts in building a comprehensive

and high-quality reference. To accelerate the data collection,

we built a semi-automatic processing pipeline, including data

crawling, standardized processing, and harmonization. We

have put great efforts into systematized operations such as

formatunificationof rawdata, cell-typeharmonization, lineagedi-

vision, andmisannotation detection and exclusion. The quality of

reference is extremely vital for automatic annotation. A reference

with abundant cell types and enough training samples for each

cell type can enable huge improvements in annotation accuracy,

which can be confirmed by the results of our study. We observed

that insufficient training cells and a limited number of datasets

and cell types will lead to low annotation accuracy. It should be

mentioned that the reference-basedapproachescanonly predict

the cell type presented in the reference. Cells that do not exist in

the training set will be predicted as unknown. Despite our refer-

encecontaining relatively large-scaledatasets, thenumber of da-

tasets in different tissues and the cell-type abundance in each tis-

sue is still imbalanced. This issue will be solved as the amount of

data continues to grow or data-generation algorithms42,43

develop. In the future, SELINA will be updated to include more

experimentally validated cell types. Apart from incomplete refer-

ence, different cell types with similar transcriptomic profiles are

often misannotated in the reference data, e.g., CD4+ T cells and

CD8+ T cells. Recently, CITE-seq44 and REAP-seq45 capturing

surface proteins could better distinguish cells with similar tran-

scriptomic profiles. By integrating the data from CITE-seq and

REAP-seq, we can obtain more accurately annotated cell-type

references. Additionally, although SELINA achieved a better per-

formance in disease data annotation using cross-validation, it is

difficult to distinguish normal cells fromabnormal cells for one un-

labeled disease dataset with other independent datasets as ref-

erences due to the diversity of the expression profiles for

abnormal cells (Figures S6G–S6I).46 For example, pancreatic b

cells can behave very differently in different datasets due to

different levels of cellular stress. Therefore, it is difficult to build

a comprehensive database for disease scRNA-seq data.47

Finally, the deep learning model we used only excels at clus-

tering and classification tasks; it still lacks biological insights,

such as the ability to identify key factors for one cell type. In the

future, we will use graph-based algorithms48 to extract the struc-

tural information so that the association between genes and cell
Cell Reports Methods 3, 100577, September 25, 2023 11
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types can be preserved to present more explainable knowledge

andbeused for novel cell-type identificationsandevenautomatic

annotation correction.With the presence of the above features in

the SELINA algorithm and continuous expansion of the SELINA

reference,weanticipateSELINA toaccurately characterize all hu-

man cell types with the potential to transfer to other species.

Limitations of the study
In our study, we observed that insufficient training cells and the

limited number of datasets and cell types will lead to low annota-

tion accuracy. In addition, although reference-based methods

can predict cell types present in the reference, our relatively

large-scale reference still suffers from imbalances in tissue-spe-

cific datasets and cell-type abundance. Finally, while our deep

learning model performed well in clustering and classification, it

lacks biological insights such as identifying key factors for a

cell type.
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table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table. The pre-trained models covering 136 human datasets are available from https://github.com/wanglabtongji/

SELINA-reference. R version of SELINA and the automatic data collection workflow, as well as the benchmark code used in

the analyses, can be found at https://github.com/SELINA-team/.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

harmony
METHOD DETAILS

Reference construction
We have built a semi-automatic data collection and processing workflow based on MAESTRO, which could automatically download

and process the scRNA-seq data from public repositories such as GEO, EMBL-EBI, GSA, and HCA.We have applied the workflow to

collect 136 normal human scRNA-seq data from 35 tissues, the details for the workflow are as follows.

The semi-automatic workflow has two major components, data processing and unification (Figure S1A). For the data processing

components, dataset records in public databases were first automatically crawled based on keywords such as scRNA-seq, single-

cell RNA-seq.Only the records that includescRNA-seqdatawere kept.While different studiesprovideddatasetswith various formats,

we first unified them into data formats that can be automatically processed using the workflow. Then the workflow performed quality

control, normalization, dimension reduction, batch effect removalwithin eachdataset, and clustering analysis. To systematicallymea-

sure the batch effects, each dataset was quantified with a metric based on information entropy and the Euclidean distance between

cell coordinates in theUMAPgraph. The information entropy can reflect the complexity of a system, and a higher entropy valuemeans

that different batches of cells are mixed more evenly. The entropy was calculated by
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entropy = �
XN
1

pn log2pn

where N represents the number of batches and pn represents the proportion of cells belonging to a particular batch among the 30

cells in the neighborhood. The threshold was set based on the ratio of the theoretically maximum entropy in a set of data to the me-

dian of all entropy values. If this ratio is larger than 4, it proves that most of the entropy values are distributed on the smaller side,

which means that for most of the cells, the surrounding cells are not evenly mixed among different batches. For data with entropy

levels below the threshold, the batch effects were removed using the conventional correlation analysis49 (CCA). Specifically, in

the annotation step, the cells were either named directly from the original studies to assure authenticity or annotated using themarker

genes from the original studies (Table S3). The average logFC of each cell type marker gene in each cell cluster was calculated as the

cell type score, and the cell type with the highest score was assigned to that cell cluster. The annotation results were manually vali-

dated based on the expression distribution of the marker genes after the automatic annotation.

The second unification component aimed to remove low-quality cells and inconsistent annotations. The labels for the same cell type

were first unified using Cell Ontology. For example, pancreatic polypeptide cells and gamma cells were used in different studies and

referred toas thesamecell type,weunifiedall of themtopancreaticpolypeptidecellsaccording to the literature.Next, the cell typeswithin

each tissuewere divided intomajor lineage (for example, DCcell and epithelial cell) andminor lineage (for example, cDC1 cell, cDC2 cell,

ciliatedcell, andclubcell).We take liver endothelial cells asanexample, asFigureS1B left panel shows, thereare four typesofannotations

for endothelial cells from the liver, ofwhich three types belong to theminor level andone type belongs to themajor level. Datawith unclear

labelsmay lead to a lower training accuracyofmodels, thereforewe reassignedsub-lineageannotations to the endothelial cells basedon

the marker genes that the papers provided. Cells without expression of any known cell type’s marker genes were assigned with major

lineage labels attached with the suffix Subset. For each tissue type, the workflowmerged all the datasets and performed batch removal

with harmony and re-clusteringwithin each tissue.Mislabeled cells, for example, the tissue-specific cellsmixed with immune cells, were

simply removed from the reference. We deposited the workflow at https://github.com/SELINA-team/SELINA-reference_construction.

We intend to maintain our SELINA reference in the long run. Besides, to promote the usage of SELINA, we have also provided an online

annotation function for users to annotate their scRNA-seq dataset (http://selina.compbio.cn/#/Annotation).

Data augmentation of rare cell types
SMOTE was applied in the high dimensional space formed by all the genes within the reference data. The minority cell types were

defined based on the ratio of cell numbers of them to that of the cell type with the maximum cell number.

The criteria for selecting minority cell types are listed as follows. Let Nmc be the cell number of minority cell types, and let Nmax be

the maximum cell number.

Nmc <

8<: 100;Nmax ˛ ð100; 500Þ
500;Nmax ˛ ð500;1000Þ
1000;Nmax ˛ ð1000; +NÞ

If Nmax is within the interval (100,500), the cell types (n < 100) are defined as rare cell types and will be oversampled to 100 cells. If

Nmax is in the interval (500,1000), then cells types (n < 500) are defined as rare cell types andwill be oversampled to 500 cells. IfNmax is

greater than 1000, then cell types (n < 1000) are defined as rare cell types and will be oversampled to 1000 cells. 1000 is the limit for

oversampling cells as excessively oversampling may reduce the quality.

During the synthesis, a cell and its k nearest neighbors from one rare cell type are randomly chosen to generate synthetic cells at

randompoints on the line connecting the anchor cell and the neighbor cells. We denote the gene expression profiles of the anchor cell

and one certain neighbor cell as xa and xn, respectively. The new cell xs can be calculated using the following formula:

xs = xa + lðxn � xaÞ
where l is a random number between 0 and 1.

SELINA training with normal data as reference
The pre-training framework is composed of a feature extractor, a cell type discriminator and a platform discriminator (Figure 2C). We

denote the feature extractor asGf and the cell type discriminator asGc. Suppose we have K cell types, as the platform discriminator

has an equal number of classifiers to cell types, these classifiers are denoted asGk
p;k = 1;.;K, each one is responsible for matching

cells from different platforms associated with one cell type. Suppose we haveN cells, for each cell we have the gene expression vec-

tor xn, we denote the probability of one cell being assigned to each of the K cell types as bykn;k = 1;.;K, which is a vector calcu-

lated by

softmaxðGcðGfðxnÞÞÞ:
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The attention of one certain platform discriminator to one cell is calculated as the corresponding prediction probability byk
n, which is

used toweight the extracted features of that cell. The cost function of the platform discriminator is calculated as the average loss of all

classifiers within it, and the formula is shown as follows:

Ld =
1

NK

XN
n = 1

XK
k = 1

Lk
p

�
Gk

p

�byk

nGfðxnÞ
�
;pn

�
whereGk

p is the k-th platform discriminator with Lkp as its cross-entropy loss and pn is the platform label. The objective function is the

sum of balanced loss from the cell type discriminator and platform discriminator, which is calculated using the formula listed below:

L
�
qf ; qc; q

k
pjKk = 1

�
=

1

N

 
l
XN
n = 1

LcðGcðGf ðxnÞÞ; ynÞ + 1 � l

K

XK
k = 1

XN
n = 1

Lk
p

�
Gk

p

�byk

nGfðxnÞ
�
;pn

��
:

Lc is the cross-entropy loss of the cell type discriminator, yn is the cell type label, and l is a hyperparameter that balances the two

objectives in the optimization problem, the formula is as follows:

l =
2

1+e� 10p
� 1
p =
i+nepoch � Nloader

Nloader � Nepoch

where i represents the index of one specific batch being trained in the current epoch,Nepoch is the total number of training iterations on

the entire sample, nepoch is the index of current iteration on the entire sample,Nloader is the number of batches in the training set. First,

p is calculated as a value representing the progress of the training process, ranging from 0 to 1. Then, l is calculated using a sigmoid

function with a scaling factor of 10. The optimization problem is to find the parameters bqf ; bqc; bqkpðk = 1;2;.;KÞ; that simultaneously

satisfy

ðbqf ; bqcÞ = arg min
qf ;qc

L
�
qf ; qc; q

k
pjKk = 1

�

�bqf ; bq1p;.; bqKp� = arg max
qf ;q

1
p ;.;qkp

L
�
qf ; qc; q

k
pjKk = 1

�
:

The feature extractor and cell type discriminator of the pre-trained model are connected as the encoder of the autoencoder. The

structure of the decoder is symmetrical to that of encoder. We denote the encoder as Ge and the decoder as Gd:We first freeze the

encoder and train the decoder and then fix the decoder and train the encoder. The objective function is Lðqe; qdÞ =
1
N

PN
n = 1LaðGdðGeðxnÞÞ;xnÞ

where La is the mean squared error (MSE) loss of the autoencoder. The optimization problem is to find the parameters bqe; bqd satis-
fying ðbqe; bqdÞ = arg min

qe ;qd
Lðqe; qdÞ:Once the fine-tuning step is finished, the decoder is removed, and the encoder is used to predict for

unlabeled datasets.

SELINA training with disease data as reference
The disease datasets were collected from published papers (Table S4), annotated with original cell type labels, merged and trained

using the adjusted framework described in the following section.

The pre-training framework is expanded to leverage the cell source information. A cell source classifier and a few platform clas-

sifiers of which the number is equal to cell sources are added to the pre-training framework (Figure S6A). The platform classifiers now

can be categorized into two types, one pairs with cell source classifier and the other pairs with cell type classifier. Besides, the cost

function was adjusted as:

L =
1

N

 
l
XN
n = 1

Lcsð bzn ; znÞ + l
XN
n = 1

Lctð byn ; ynÞ + ð1 � lÞ2
2S

XS
s = 1

XN
n = 1

Lcss
p ðcpn ;pnÞ

�
+
2lð1 � lÞ

T

XT
t = 1

XN
n = 1

Lctt
p ðcpn ;pnÞ

�
where S, T,N represent numbers of cell sources, cell types and cells in training data respectively, Lcs, Lct, L

css
p and Lcttp represent loss

of cell source discriminator (Gcs), cell type discriminator (Gct ), the s-th platform classifier (Gcss
p ) responsible for s-th cell source and the

t-th platform classifier (Gctt
p ) responsible for t-th cell type respectively. bzn , zn,cyn , yn, cpn and pn represent prediction results and true

label for cell source, cell type, and platform label for the n-th cell respectively. Besides, the fine-tuning step was removed when SE-

LINA taking the disease data as reference.
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Model parameters
The neural network was implemented with PyTorch (Figure S2C). The feature extractor contains three layers: one input layer with

the same number of nodes as the gene number and one output layer with 100 nodes followed by a dropout layer. The cell type

discriminator has four layers: a 100-node input layer, a 50-node hidden layer followed by a dropout layer, and an output layer with

a number of nodes equal to cell types. Each platform discriminator unit contains three layers: a 100-node input layer, a 25-node

hidden layer, and an output layer with a number of nodes equal to sequencing platforms. The output layer of feature extractor and

input layer of cell type discriminator, cell source discriminator and platform classifiers were expanded to 500 nodes when training

with disease data.

The Rectified Linear Units (ReLU) was used as activation function. The Adam optimizer was used as the optimizer with default set-

tings. The learning rates of pre-training and encoder training were set to 0.0001. For decoder training, the learning rate was set to

0.0005. The epoch numbers of pre-training and decoder training were set to 50, whereas the epoch number of encoder training

was set to 20. The dropout layers’ parameters were set to default.

Calculation of LISI score
LISI was proposed to quantitively assess the mixing degree of samples from different batches.30 LISI first selects an anchor cell and

assigns each cell in the neighborhood a weight based on the Euclidean distance to the anchor cell. The weight is calculated using

Gaussian kernel-based distribution with a fixed perplexity (30), the formula is as follows:

wn =
eb�jjxa � xn jjPN

n = 1

eb�jjxa � xn jj

wn is the weight of the n-th neighbor cell, xa and xn are the coordinates of the anchor cell and the n-th neighbor cell, b is the parameter

of the Gaussian kernel-based distribution which can be inferred using the perplexity, and N represents the total number of selected

neighbor cells. The weights are used to calculate Inverse Simpson Index that represents the expected number of cells need to be

sampled if cells from one batch are observed twice. The Inverse Simpson Index is calculated as:

ISI =
1PB

b = 1

� PK
k = 1

wk

�2

K represents the number of neighbor cells belonging to one specific batch and B represents the total number of batches.

Benchmark of SELINA and existing tools
For all datasets in each tissue, we iteratively took one dataset as query data and merged the remaining datasets as a reference

dataset. The extremely large datasets that consume vast amounts of memory were downsampled with all cell types intact. The

expression profiles of the reference data and query data were scaled to 10000 and log-transformed. The querying process

used common genes between query and reference data. The annotations of each tested dataset were from the minor lineage.

Different methods have different ways of identifying unknown cell types and different thresholds for the unknown cell types,

and some of them even do not have the settings to identify unknown cell types. For a fair comparison, we set a threshold of

0 for all the methods, which means that all cells will be forced to be given an annotation label, and there is no unknown type

of cells for all the methods. For all benchmarks, scmap, singleR, SingleCellNet, scibet and CelliD were trained and tested with

CPU AMD EPYC 7552 2.2 GHz. SELINA, ACTINN, mtSC and Cell BLAST, which are deep learning-based frameworks, were

trained with GPU GTX960 and tested with AMD EPYC 7552 2.2 GHz. All the parameters were the defaults or set as recommended

in the corresponding documentations.

The accuracy was defined as the ratio of corrected assigned cells over all cells. TheMacroF1 score was calculated as listed below:

MacroF1 =
1

K

XK
k = 1

2 � Precisionk � Recallk
Precisionk+Recallk

K represents the number of cell types in the query dataset. Precisionk and Recallk are the precision and recall of the k-th cell type.

Calculation of overlapping score
The overlapping score represents the degree of overlap of cell types between different datasets. For each tissue, we selected one

dataset as the query dataset and found the common cell types between the query dataset and all the other datasets. The corre-

sponding overlapping ratio for this dataset was calculated as the proportion of cells from the shared cell types. This process was

repeated until all the datasets had been taken as query dataset, and the overlapping ratio of this tissue was the averaged ratio of

all datasets.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Count data normalization
In reference construction, feature counts for each cell are divided by the total counts for that cell firstly. After scaling, the values are

natural-log transformed using log1p to stabilize the data and reduce the impact of outliers. The count data normalization was imple-

mented using the NormalizeData function in the R package MAESTRO.

Pairwise wilcoxon rank-sum test
In Figures 3C, 3G and 3H, we compared p values using the one-sided pairwise Wilcoxon rank-sum test. Significance levels were

indicated by asterisks, where *p < 0.05, **p < 0.01, ***p < 0.001. The significance calculation was implemented using the geom_signif

function in the R package ggsignif.50
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Supplementary  Figure 1

Figure S1: Pipeline for data processing and cell type curation, related to Figure 1. 

a The processing procedure for the individual dataset. First, the low-quality cells were filtered and the 
dimension of the expression profiles was reduced with PCA. The batch effects across different sam-
ples or patients within a dataset were removed. Then the cells were clustered and assigned with cell 
types based on either the original annotation or the marker genes papers provided. 
b Minor level annotation harmonization across datasets in each tissue. Here we take the endothelial 
cells as an example. Cells belonging to endothelial lineage were extracted and applied with PCA 
analysis, batch removal, and re-clustering. Based on the marker genes papers provided, the cells 
with major level annotations were re-annotated with minor level annotations. Cells without expression 
of any known marker genes were assigned with a major lineage label attached with the suffix Subset. 
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Figure S2: Details of the reference data and model, related to Figure 2, 3 and Model parame-
ters(STAR Methods) 

a-b Data summary of the reference data atlas. Cell type number (a) and cell number (b) for each 
tissue.
c Details of SELINA architecture. The figure lists the specific operations and the neurons number in 
each layer of both models. K represents the number of cell types. L_c  and L_p  represent the loss 
functions that are used to train the models based on the predicted cell types and sequencing plat-
forms, respectively.
d-f SELINA performance across different tissue with or without SMOTE. Prediction accuracy of each 
cell type in intestine (d), stomach (e) and liver (f) with or without SMOTE.
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Figure S3: Validation of the strategies used in SELINA, related to Figure 3

a 2D-UMAP representation of liver data based on dimension reduction results from the feature 
extractor. Graphs on the top and bottom show the sequencing platform labels and cell type labels for 
each cell respectively.
b, c 2D-UMAP representation with data (top) and cell type labels (bottom) of outputs from the first 
hidden layer of the pre-trained model (b) and fine-tuned model (c).
d Box plot for LISI scores of reference and query cells in the lung (top) and intestine (bottom). Graphs 
on the left show the LISI scores of the common cell types between reference and query data. Graphs 
on the right show the LISI scores of the cell types that are unique to reference or query data. Cell coor-
dinates were calculated by UMAP based on the output from the first hidden layer of the pre-trained 
model and tuned model respectively. Each dot represents the LISI score of one cell. P values were 
determined by pairwise Wilcoxon rank sum test, one-sided, *P < 0.05, **P < 0.01, ***P < 0.001.
e Bar plot shows the performance with different prediction strategies. Graph on the top, middle and 
bottom show the proportion of each cell type in training data, the prediction F1 score, and the accuracy 
of each cell type respectively. Base represents the situation in which the data was not oversampled 
and the pre-trained model was used without fine-tuning. SMOTE represents the results when SMOTE 
was additionally implemented to oversample rare cell types. Autoencoder shows the results when 
SMOTE and autoencoder were both implemented. 
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Figure S4: Performance evaluation of SELINA and existing annotation tools, related to Figure 4

a Scatter plots indicating the correlation between cell type overlapping degree and performance. Each 
individual dot represents a tissue (n=14).
b-f Performance of tested tools on tissues with a large number of datasets. Each dot represents the 
testing result of one dataset.
g-h Performance evaluation of SELINA and existing annotation tools in single sample tissues. The 

 testing was 5-fold cross-validation. The top row shows the average performance of all tissues for each 
method. The number of datasets included in each tissue is listed behind the tissue names.  

 i Benchmark for the time consumption using CPU and GPU in fine-tuning step. Each point represents 
the mean value of three replicates.
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Figure S5: Expandable references of SELINA, related to Figure 5

a-b Performance evaluation of SELINA with an increasing number of datasets being used as a refer-
ence in the pancreas and liver.
c-d Heat map for the confusion matrix of the prediction results on two example datasets from Allen 
Institute, with normalization for each row. 
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Supplementary Figure 6
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Figure S6: Application of SELINA in annotating datasets in disease scenarios, related to 
Figure 6

a Training framework for disease data. First the gene expression vector will be converted to a feature 
vector by feature extractor. Next the cell source discriminator, cell type discriminator and platform 
discriminators will take the transformed feature as input and output the cell source, cell type and plat-
form labels respectively. The platform discriminators contain two types of classifiers, one collaborates 
with cell source discriminator to remove the platform batches within cells from the same source by 
adversarial training, and another one collaborates with cell type discriminator to remove the platform 
batches within cells of the same type. 
b Box plot representing the prediction accuracy and MacroF1 with or without cell source information 
being used when training.
c-f Prediction accuracy and MacroF1 of cell type (c, d) and cell source (e, f). Datasets belonging to one 
disease were merged and split into 5 equal parts. The evaluation was carried out with 5-fold cross vali-
dation. Each dot represents the results of one part of data (n=5). Tools are ranked by the average 
performance on three diseases.
g-h Bar plot for prediction accuracy and MacroF1 of cell type (g) and cell source (h). The evaluation 
was carried out with one entire dataset being selected as test data each time. Y axis represents the 

i Venn diagram representing the overlap of differentially expressed genes between different datasets.
dataset name.
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