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Abstract

Single-cell CRISPR screens have been widely used to investigate gene regulatory circuits in diverse biological systems. The recent
development of single-cell CRISPR screens has enabled multimodal profiling of perturbed cells with both gene expression, chromatin
accessibility and protein levels. However, current methods cannot meet the analysis requirements of different types of data and have
limited functions. Here, we introduce Single-cell CRISPR screens data analysEs and perturbation modEling (SCREE) as a comprehensive
and flexible pipeline to facilitate the analyses of various types of single-cell CRISPR screens data. SCREE performs read alignment,
sgRNA assignment, quality control, clustering and visualization, perturbation enrichment evaluation, perturbation efficiency modeling,
gene regulatory score calculation and functional analyses of perturbations for single-cell CRISPR screens with both RNA, ATAC and
multimodal readout. SCREE is available at https://github.com/wanglabtongji/SCREE.

Keywords: analyses pipeline, single-cell CRISPR screens, perturbation efficiency, gene regulatory circuits

INTRODUCTION
Pooled CRISPR screens are widely used to screen candidate
genes that contribute to specific phenotypes [1–3]. Traditional
CRISPR screens use bulk DNA sequencing to quantify the changes
in sgRNA count during the screen, and the readouts could
measure phenotypes such as cell growth [4], differentiation [5],
immune tolerance [6, 7], or drug resistance [8–10]. To further
increase the readout for investigating gene regulatory circuits,
recent technologies combined CRISPR screens with single-cell
sequencing, such as single-cell RNA-sequencing (Perturb-seq [11,
12], CROP-seq [13], CRISP-seq [14] and other protocols [15–18]),
single-cell ATAC-sequencing (Perturb-ATAC [19], CRISPR-sciATAC
[20] and Spear-ATAC [21]), and multi-modal sequencing (Perturb-
CITE-seq [22] and ECCITE-seq [23]). These new technologies
generated rich profiles for understanding genotype–phenotype
relationships; however, they also posed significant analytical
challenges.

The increased amount of single-cell CRISPR screens data calls
for a standardized analysis pipeline that could perform raw data
processing, quality control, clustering, perturbation modeling
and other downstream analyses. In addition, although several
methods have been developed to model the targets of the per-
turbed genes, including MIMOSCA [12], scMAGeCK [24], SCEPTRE
[25], GSFA [26] and MUSIC [27], none of them can be directly
applied to scATAC-seq-based CRISPR screens. Finally, many
current tools have poor computing efficiency and are incapable
of handling genome-wide single-cell CRISPR screenings involving
millions of cells. To fill these gaps, we introduce SCREE (Single-
cell CRISPR screens data analyses and perturbation modeling),
a comprehensive and flexible pipeline to streamline raw data
processing, quality control, clustering, visualization, perturba-
tion enrichment evaluation, perturbation efficiency modeling,
inference of the gene regulatory relationships and functional
interpretation of multi-modal single-cell CRISPR screens data.
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Figure 1. Workflow of SCREE. Schematic of SCREE workflow. SCREE takes either raw sequencing data or processed feature count matrix from single-cell
CRISPR screens as input. If use raw data as input, SCREE will generate a gene/peak count matrix and a sgRNA count matrix first. With the feature count
matrix and sgRNA information, SCREE performs sgRNA information visualization, single-cell quality visualization and quality control, perturbation
enrichment calculation, perturbation efficiency evaluation, regulatory score estimation, potential targets identification and functional analysis. All
figures and tables will be saved, and all results will be integrated into a summary HTML file.

SCREE not only provides a standard workspace for single-
cell CRISPR screens data but also facilitates access to future
functional interfaces.

RESULTS
Overview
SCREE includes two components: preprocessing and analysis
(Figure 1). In the preprocessing component, SCREE performs
alignment and quantification for both sgRNA and mRNA/DNA
using pair-end sequenced FASTQ files as input. For RNA-seq-
based screens, SCREE generates gene-level expression count or
UMI tables at the single-cell level. For ATAC-seq-based screens,
users could choose to either output single-cell count tables based
on genomic bins with fixed lengths or peaks called from the
bulk level. Additionally, SCREE provides a function for allocating
sgRNA to each cell based on the distribution of sgRNA counts.
In the analysis component, SCREE performs a set of quality
control, visualization and analysis steps using the count matrix

as input. These steps include sgRNA information visualization,
single-cell quality control, clustering and perturbation enrich-
ment visualization, perturbation efficiency modeling, gene regu-
latory score estimation, target genes or enhancers identification
and functional analysis of potential targets (Methods). All of the
results were generated in a well-organized result directory and
can be visualized in the summary HTML file (Supplementary
Files S1 and S2 available online at http://bib.oxfordjournals.org/).

SCREE is a comprehensive pipeline for analyzing single-cell
CRISPR screens data and offers several advantages. First of
all, SCREE is flexible and can be applied to data from various
experimental designs, including gene perturbations with scRNA-
seq, scATAC-seq or multimodal readout, enhancer perturbations.
SCREE is also supported for starting with either raw sequencing
files or processed count matrices. Second, SCREE is highly
integrated and can be easily installed via a simple Conda
command, which is user-friendly and has eliminated obstacles
in package distribution. Third, SCREE provides an HTML file
that summarizes all of the outputs from single-cell CRISPR
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Figure 2. SCREE output of an ECCITE-seq dataset from human THP1 cell line. (A) UMAP visualization of clustering results, labeled by unsupervised
clusters. (B) UMAP visualization of clustering results, labeled by top 20 perturbations with the most cell numbers. NTC: negative control. (C) Enrichment
ratio of each perturbation in each cluster. NTC: negative control. (D) Perturbation efficiency of each perturbation calculated by Mixscape. KO: knock-
out; NP: non-perturbed. (E) Potential target gene numbers inferred from scMAGeCK results (|score| > 0.2, P_value < 0.05). (F) Pearson correlation of each
perturbation, using the regulatory score of a combination of all potential target genes for each perturbation (|score| > 0.2, P_value < 0.05).

screen data. All of the functions could also be fine-tuned step-
by-step following our detailed protocols, which will help the
users better understand the data qualities. Finally, we have
optimized several functions of the integrated packages including
scMAGeCK, allowing SCREE to handle millions of cells with
excellent computing efficiency.

Gene perturbation dataset
To demonstrate the function of SCREE, we first applied it to a
gene perturbation dataset using the ECCITE-seq technology from
the human THP1 cell line [23]. The sgRNAs in this dataset were
designed to target putative regulators of PD-L1 in response to IFN-
γ stimulation and this dataset used scRNA-seq as a readout. To
visualize the sgRNA information and quality of this dataset, we
first performed a quality control analysis (Figure S1A–C available

online at http://bib.oxfordjournals.org/). Each cell was assigned
with only one sgRNA, and the majority of sgRNAs were distributed
throughout hundreds of cells (Figure S1A and B available online
at http://bib.oxfordjournals.org/). We next performed a quality
control to remove cells with less than 200 detected genes and
genes that are detected in less than 1% of cells (Figure S1C
available online at http://bib.oxfordjournals.org/, Methods).

To determine whether the perturbations will trigger cell state
transition, we performed unsupervised clustering and UMAP
visualization (Figure 2A and B). Although there were several dis-
tinct clusters (Figure 2A), we were unable to observe perturbations
that were enriched in any of the clusters from the UMAP, which
might be due to a large number of perturbations in comparison
to the clusters (Figure 2B). We therefore introduced an enrich-
ment ratio for each perturbation to visualize the perturbation
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enrichment in each cluster (Methods). Using the enrichment ratio,
IFNGR1, JAK2, IFNGR2 and STAT1 showed comparable enrichment
patterns, and BRD4 was exclusively enriched in cluster 13
(Figure 2C). The perturbation signature for each cell was then
normalized, which enhanced the outcomes of the clustering and
enrichment visualization (Methods, Figure S1D–F available online
at http://bib.oxfordjournals.org/). We employed Mixscape [23] to
predict the effectiveness of perturbation for each sgRNA using the
perturb signature (Figure 2D). Only 11 of the 25 perturbations had
non-zero perturbation efficiency. These perturbations included
IFNGR1, JAK2, IFNGR2, STAT1 and BRD4. Notably, different sgRNA
of the same perturbation exhibited distinct perturbation efficacy,
such as STAT1, IRF1 and BRD4. This information will be helpful
for future sgRNA design and selection (Figure 2D).

To further identify the potential targets for each perturbation,
we calculated the regulatory score for each perturbation of
each gene using scMageck (see section Methods). As expected,
perturbations that showed distinct perturbation enrichment
also had greater numbers of potential targets than other
perturbations (Figure 2C–E and Figure S1F available online
at http://bib.oxfordjournals.org/). To investigate whether the
perturbations exhibited a co-regulation pattern, we calculated the
correlation between each perturbation using the regulatory score
of all potential targets (Methods). Consistent with perturbation
enrichment results, IFNGR1, JAK2, IFNGR2 and STAT1 displayed
a strong positive correlation, suggesting that these factors were
co-regulated in response to IFN-γ stimulation (Figure 2C, F and
Figure S1F available online at http://bib.oxfordjournals.org/). To
illustrate the accuracy of potential target genes, we performed
functional analysis on IFNGR1 targets (Figure S1G and H available
online at http://bib.oxfordjournals.org/). As expected, genes asso-
ciated with IFN-γ response, inflammation and antigen processing
were down-regulated after IFNGR1 perturbation, which was
compatible with the function of IFNGR1 (Figure S1G and H
available online at http://bib.oxfordjournals.org/). In addition, we
also applied SCREE to another paired gene perturbation dataset
using the CROP-seq technology on the human K562 cell line [28]
and return similar results (Figure S2 available online at http://
bib.oxfordjournals.org/). In summary, our analyses suggest that
SCREE can be applied to datasets of gene perturbation in con-
junction with scRNA-seq and generate accurate and reasonable
results.

Gene overexpression dataset
Besides gene perturbation using CRISPR-based editing, there are
also approaches that attempt to overexpress known genes or cod-
ing variants via exogenetic vectors [29, 30]. Compare to CRISPR-
based editing, which might suffer from the unpredictable off-
target effect, these strategies are more stable in modulating gene
expressions. To evaluate whether the sgRNA assignment strategy
and analytic functions in SCREE can be applied to this type of
dataset, we applied SCREE to an OverCITE-seq gene overexpres-
sion dataset from human primary T-cells [30]. The sgRNA library
of this dataset was composed of around 30 ORFs, which were
transduced into CD8+ T cells from a healthy donor for overexpres-
sion. Notably, this dataset included information on the cell state
(resting T-cells or stimulated T-cells) for each cell. After the ORF
assignment, we performed the quality control analysis to display
the ORF information and scRNA-seq data quality (Figure S3A–C
available online at http://bib.oxfordjournals.org/). A portion of
cells was allocated with multiple ORFs, with RAN and CICL1 being
assigned to substantially more cells than other ORFs, which might
conceivably impact the outcomes of subsequent investigations

(Figure S3A and B available online at http://bib.oxfordjournals.
org/).

We first investigate whether the perturbation enrichment in
SCREE could display a similar trend as the residual of the stan-
dardized chi-square test used in the original study. We performed
clustering, perturbation enrichment calculation and visualization
in SCREE (Figure 3A–C). Although there is no distinct perturbation
enrichment from UMAP visualization, LTBR revealed a substantial
and unique enrichment in Cluster 8 similar to the original study
(Figure 3B and C). Interestingly, several clusters including Cluster
8 were mostly contributed by stimulated T-cells (C0, C3, C6, C8),
whereas the majority of other clusters contained resting T-cells
(Figure 3D). These analyses confirmed that LTBR might be an
important regulator for T-cell activation.

To investigate the downstream targets for LTBR to induce the
transition of T-cells from resting to stimulated, we estimated the
regulatory score for each ORF relative to each gene and identified
thousands of potential targets for each ORF (Figure S3D and E
available online at http://bib.oxfordjournals.org/). We then per-
formed functional analysis for LTBR. The top genes with a positive
regulatory score in LTBR-overexpressed cells were consistent with
the marker genes of Cluster 8 in SCREE results and markers
of LTBR-specific cluster in the original study (Figure 3E). Under
stimulation, the up-regulated LTBR targets were enriched in the
NF-κB signaling pathway, MHC II protein assembly and antigen
processing, which might highlight the role of LTBR on CD8+ T
cells activation through NF-κB signaling pathway (Figure 3F). In
summary, these results suggest that SCREE could also generate
reliable results for gene exogenous overexpression data paired
with scRNA-seq.

Enhancer perturbation dataset
To evaluate whether SCREE had the potential to investigate
enhancer-gene regulations using single-cell CRISPR screens data,
we applied SCREE to an enhancer perturbation dataset [31]. To
identify prospective enhancer-gene pairs, the sgRNAs in this
dataset were intended to target potential enhancer regions but
not gene coding regions of the K562 cells. We first depicted
the sgRNA information and scRNA-seq quality (Figure S4A–C
available online at http://bib.oxfordjournals.org/). Since almost
half of the cells were assigned with more than one sgRNA and
there were over 1000 sgRNAs designed in this dataset (Figure
S4A and B available online at http://bib.oxfordjournals.org/),
we did not show the clustering and perturbation enrichment
analyses here.

We assessed the regulatory score for each enhancer and
performed the same downstream analyses using SCREE (Figure
S4D and E available online at http://bib.oxfordjournals.org/). We
obtained hundreds of potential targets for a variety of enhancers
(Figure 4A). Given the hypothesis that enhancers are more likely to
target neighboring genes, we classified potential target genes near
the enhancer region (±2 Mb) as direct targets and discovered that
almost one-third of enhancers lacked direct targets (Figure 4B).
The number of perturbed direct targets, along with the number of
total targets from scMageck results, could potentially be used
as functional metrics to evaluate the efficiency of enhancer
targeting sgRNAs.

To demonstrate SCREE could identify reliable enhancer-
gene pairs, we exploited enhancer chr1_26259847_26259870
as a case study and displayed its potential direct targets
using Cicero (Figure 4C and Figure S4D, E available online at
http://bib.oxfordjournals.org/). The gene expressions of these
direct targets were consistent with their regulatory score. For
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Figure 3. SCREE output of an OverCITE-seq dataset from human primary T-cells. (A) UMAP visualization of clustering results, labeled by unsupervised
clusters. (B) UMAP visualization of clustering results, labeled by perturbations. Multiple: cells with more than one sgRNA assigned. (C) Enrichment ratio
of each perturbation in each cluster. (D) Cell proportion of different cell states in each cluster. Resting: ‘resting T-cells’; stimulated: ‘stimulated T-cells’.
(E) Regulatory score and P_value distribution of LTBR. The top 5 up-regulated and down-regulated genes with the highest score are labeled (|score| > 0.2,
P_value < 0.05). (F) GO enrichment results, which take potential up-regulated targets of LTBR as input (score > 0, P_value < 0.05). BP: biological process;
MF: molecular function; CC: cell component.

example, TMEM50A was down-regulated after the enhancer
perturbation (Figure 4D). In addition, the expression level of
TMEM50A was higher in cells allocated with several enhancers
than in cells only assigned one enhancer. In contrast, for LIN28A,
both disrupt a single enhancer and multiple enhancers could

downregulate its gene expression. These results indicate the
complex effect of synergistic enhancers in the same cells.
In summary, our analyses suggest that the SCREE could be
employed to study enhancer-gene pairs in enhancer perturbation
datasets.
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Figure 4. SCREE output of an enhancer-perturbation dataset from human K562 cell line. (A) Potential target gene numbers inferred from scMAGeCK
results (|score| > 0.2, P_value < 0.05). (B) Potential direct targets numbers of each enhancer (|score| > 0.2, P_value < 0.05). (C) Regulatory potential of
enhancer to surrounding genes (P < 0.05). (D) Surrounding gene expression level under the condition of enhancer perturbation and negative control.
Single enhancer: cells only assigned with specific enhancer; multiple enhancers: cells assigned with more than one sgRNA including specific enhancer;
NTC: negative control.

Gene perturbation dataset with scATAC-seq
readout
Recently studies combined CRISPR-screen with scATAC-seq to
investigate the gene regulatory circuit changes after perturbation
[19–21]. To demonstrate the function of SCREE on these datasets,
we applied SCREE on a Spear-ATAC dataset with perturbations
on 6 transcription factors (TFs) in K562 cells [21]. The fragments
size distribution of this dataset exhibited two narrow peaks, one
around 50 bp and another around a mono-nucleosomal 180 bp,
which is consistent with conventional scATAC-seq (Figure 5A).
After sgRNA assignment, we visualized the sgRNA information
and scATAC-seq quality (Figure S5A–C available online at http://
bib.oxfordjournals.org/). All cells were assigned with a single
sgRNA or no sgRNA, and the majority of sgRNA was assigned
to less than 200 cells (Figure S5A and B available online at http://
bib.oxfordjournals.org/).

To better evaluate the perturbation effect on genes, we con-
verted the peak count matrix to the gene activity matrix to inves-
tigate gene regulatory circuits. We performed clustering before
and after normalizing the perturb signature (Figure 5B, C and
Figure S5D, E available online at http://bib.oxfordjournals.org/).

There are no distinguishable clusters or enrichment for both
before and after normalizing perturb signatures, which may be
caused by the similar function of these TFs on gene regulation.
We then identified the potential targets on different TFs using
scMageck based on the gene activity matrix. Among these TFs,
GATA1 and KLF1 had hundreds of potential targets, while oth-
ers only had dozens (Figure 5D). Interestingly, all TFs showed a
positive correlation with each other and were distinct from the
negative control, which confirmed that these TFs might have sim-
ilar gene regulatory circuits in K562 cells (Figure 5E). Functional
analyses on the GATA1 targets revealed its potential functions on
regulating endocytosis (Figure S5F and G available online at http://
bib.oxfordjournals.org/). Taken together, our analyses suggest that
SCREE could robustly identify perturbed genes in scATAC-seq data
with CRISPR perturbations.

We next investigate whether SCREE could identify potential
perturbed enhancers in the scATAC-seq data. We performed
differential accessible peak (DA) analyses on the clustering
result using scATAC-seq peaks directly and identified 30 DA
peaks, mostly enriched in GATA1 and KLF1 perturbation. The
number of DA peaks is consistent with the perturbed genes from
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Figure 5. SCREE output of a Spear-ATAC dataset from human K562 cell line. (A) Fragments size distribution. (B) UMAP visualization of clustering results,
labeled by unsupervised clusters, using gene activity matrix. (C) UMAP visualization of clustering results, labeled by perturbations, using gene activity
matrix. NTC: negative control. (D) Potential target gene numbers inferred from scMAGeCK results (|score| > 0.2, P_value < 0.05). NTC: negative control.
(E) Pearson correlation of each perturbation, using the regulatory score of a combination of all potential target genes for each perturbation (|score| > 0.2,
P_value < 0.05). NTC: negative control. (F) DA peaks numbers of each TF. (G) Regulatory potential of DApeaks to surrounding genes (P_value < 0.05). (H)
Expression of genes around potential enhancer regions, targeted by GATA1. NTC: negative control.

previous analyses (Figure 5D and F). We then visualized a poten-
tial enhancer region in GATA1 perturbation (chr11:68037474–
68037974), which showed that the disruption of GATA1 binding on
this enhancer significantly upregulates the CARNS1 and TCIRG1
gene while downregulating the CDK2AP2 gene nearby (Figure 5G
and H). These results collectively suggest SCREE could be used to
identify potential enhancers in gene perturbation datasets paired
with scATAC-seq.

Computational efficiency
Several tools, including MIMOSCA [12], MUSIC [27], scMAGeCK
[24], GSFA [26] and SCEPTRE [25], have been developed to predict
gene regulatory relationships and model gene perturbations using
single-cell CRISPR screens data. Among them, scMAGeCK, GSFA

and SCEPTRE are R-based workflows that are more convenient
for customizing the parameter and analyses. We compared the
performance and memory consumption of SCREE with other R-
based tools. SCREE demonstrates less time and memory usage
compared to other tools (Figure 6, Table S1 available online at
http://bib.oxfordjournals.org/). In addition, both GSAF and SCEP-
TRE failed to generate output for datasets larger than 30 K cells
due to memory overflow. In summary, SCREE is a multi-function,
multi-modal analysis pipeline for single-cell CRISPR screen data
with high computational efficiency.

DISCUSSION
In this study, we introduce SCREE, a comprehensive pipeline
to analyze single-cell CRISPR screens data. SCREE is able to
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Figure 6. Comparison of SCREE with existing R-based packages. Time usage and memory usage of scmageck_lr function in SCREE, compared to the
other two existing packages and the original scmageck_lr function.

perform preprocessing, quality control, clustering, perturbation
enrichment visualization, perturbation efficiency modeling,
gene regulatory score calculation, enhancer identification and
functional analyses for both scRNA-seq data in conjunction with
gene perturbations, gene overexpression, enhancer perturbations
and scATAC-seq data with gene perturbations (Figure S6). SCREE
can flexibly analyze these data from either raw sequencing data
or processed count matrix and provides end-to-end solutions
for single-cell CRISPR screen data analyses scaling to millions of
cells. The comprehensive functions provided in SCREE and its high
computational efficiency will facilitate future investigation of the
gene regulatory circuits using large genome-wide scale single-cell
CRISPR screens.

Despite the advantages, SCREE has a few limitations. First,
only sequencing data based on 10× Genomics Inc. platforms can
be used for alignment and quantification. Since the alignment
component of SCREE is dependent on the cellranger and
cellrangerATAC, sequencing data with different UMI/barcode
designs need a custom designed preprocess step, and could still
use SCREE for the downstream analysis with cell by gene and
sgRNA by cell matrix. Second, the current approach for sgRNA
assignment is simple and could be prone to errors in sgRNA
alignment and affected by the sequencing depth of sgRNAs.
Future assignment strategies based on probability modeling or
coverage imputation might improve the assignment of sgRNAs
[25]. Third, currently, the perturbation efficiency modeling only
supports single perturbations as it depends on Mixscape, we hope
to develop computational methods that could fit the distribution
of cells with multiple sgRNAs and model its perturbation
efficiency compare to the cells with single sgRNA. Nevertheless,
SCREE offers a platform for incorporating future development
of efficiency modeling, perturbation targeting identification
and gene regulatory circuits investigation. With these functions
updated, we anticipate that SCREE could be widely used and
benefit the biomedical community in understanding gene
regulatory mechanisms based on single-cell CRISPR screens.

METHODS
Detailed supplementation of SCREE
Alignment and quantification
SCREE performs sequence alignment and expression quan-
tification for scRNA-seq-based datasets using cellranger. For
datasets with sgRNA and mRNA reads in separate FASTQ files,
SCREE will use the ‘multi’ subcommand in cellranger, no sgRNA
reference file is needed, instead, a table containing the sequence
of sgRNA will be used as input. For datasets including both
sgRNA and mRNA reads in the same FASTQ files, SCREE will
employ the ‘count’ subcommand of cellranger, utilizing the
reference file which combined the genome and sgRNA sequence
information. All the gene expressions were quantified by
cellranger.

For scATAC-seq-based datasets, SCREE will align sgRNA reads
using STAR in cellranger and DNA reads using bwa in cellranger-
atac separately. By default, a peak matrix and corresponding
fragments file will be generated by cellranger-atac. SCREE also
provides a function based on GenomeBinMatrix in Signac [32] to
generate a bin-based matrix in addition to the default peak-based
matrix, using fragments file from cellranger-atac.

SgRNA assignment for each cell
After quantification of expression and peaks, sgRNA will be
assigned to each cell. SCREE adopts an assignment strategy
according to the raw read counts and reads proportion in each
cell for every sgRNA. By default, sgRNA with read counts >20
and a proportion of total read counts >80% will be assigned to
each cell. After assigning sgRNA, SCREE will generate a table
including 3 columns: cell, sgRNA and the corresponding gene.

Visualization for sgRNA distribution
After the sgRNA assignment, SCREE can visualize the distribution
of cell counts for each sgRNA and the number of sgRNAs in
each cell.
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Add meta info for each cell
SCREE adopts Seurat to create a SeuratObject based on a gene,
peak, or bin count matrix. To facilitate cell filtering, SCREE
appends the sgRNA assignment, sgRNA numbers and replicates
information to the object. Cells without an assigned sgRNA will
be labeled ‘blank’, whereas cells with more than one assigned
sgRNAs will be labeled ‘multiple’. Furthermore, cells with only
one sgRNA assigned will be tagged with the corresponding gene
of sgRNA. Besides the sgRNA and replicate information, SCREE will
utilize functions in Seurat and Signac to calculate mitochondrial
gene percentage for scRNA-seq based data and fractions of reads
in peaks (FRiP) for scATAC-seq based data, separately.

ScRNA-seq quality control and visualization
For scRNA-seq based datasets, SCREE will exclude cells with low
overall UMI counts (<1000), expressed gene numbers (<200), or a
large fraction of mitochondrial genes (>10%). Since the scMAGeCK
[24] algorithm takes the negative control as the baseline for all
cells, including ‘blank’ cells, SCREE may also remove cells with-
out assigned sgRNA optionally. Besides quality control on cells,
SCREE will also remove genes that are expressed in less than
1% of cells. Before and after quality control, SCREE can visualize
nFeature_RNA, nCount_RNA and the fraction of mitochondrial
genes.

ScATAC-seq quality control and visualization
For scATAC-seq-based datasets, SCREE will also remove cells with
low total UMI counts (<1000), peak/bin numbers (<200), or FRiP
(<10%), as well as optionally remove ‘blank’ cells. In addition
to removing cells, SCREE will also remove peaks or bins that
occurred in a small number of cells (default 1%). SCREE enables
the visualization of nFeature_peak, nCount_peak and FRiP prior
to and after quality control. In addition, using the fragments file
generated by sequence alignment, SCREE can also visualize the
distribution of fragment size.

Gene activity matrix generation
Gene activity calculation involves identifying the promoter and
gene body of each gene and generating a feature matrix based
on fragments file, promoter and gene body regions. SCREE
adopts Signac to calculate gene activity based on the peak count
matrix of scATAC-seq-based datasets and provides a function
‘CalculateGeneActivity’ to perform the calculation.

Normalization and scale
SCREE adopts Seurat for the normalization of scRNA-seq-based
datasets and gene activity matrix. By default, SCREE employs
the global scaling normalization method in Seurat to scale the
expression in each cell to 10 000, followed by a log transfor-
mation. After normalization, SCREE scales the matrix using all
genes and regresses the matrix by nCount_RNA and the fraction
of mitochondrial genes. For scATAC-seq-based datasets, SCREE
uses RunTFIDF in Signac to perform normalization and omits the
scaling step.

Feature selection
After normalization, SCREE adopts FindVariableFeatures in Seu-
rat to identify variable features for scRNA-seq-based datasets
and gene activity matrices. By default, SCREE adjusts the vari-
ance using variance-stabilizing transformation (vst) and returns
the top 2000 genes with the highest standardized variance. For
scATAC-seq-based datasets, SCREE only adopts FindTopFeatures

in Signac to compute the feature metadata, and all input peaks
were utilized in the dimension reduction analysis.

Dimension reduction
To minimize the dimension of scRNA-seq-based datasets and
gene activity matrices, SCREE performs principal component
analysis (PCA) on the top variable features. For scATAC-seq-
based datasets, SCREE adopts RunSVD in Signac to reduce the
dimension to 50 via latent semantic indexing (LSI). In addition,
SCREE computes the correlation between total counts and each
reduced dimension component in order to select the dimension
for downstream analysis.

Clustering and visualization
After dimension reduction, SCREE performs clustering based
on the original Louvain algorithm and shared nearest-neighbor
(SNN) graph construction for all kinds of datasets. To visualize the
clustering results, SCREE performs Uniform Manifold Approxima-
tion and Projection (UMAP) to further compress the dataset to two
dimensions. To evaluate the impact of perturbation on clustering,
UMAP visualization results will be labeled separately by cluster
and perturbations. By default, SCREE uses the top 40 dimensions
for scRNA-seq-based datasets and dimensions with an absolute
correlation value of less than 0.5 for scATAC-seq-based datasets.

Perturbation enrichment
The perturbation enrichment ratio is defined as the proportion of
cell numbers assigned with each perturbation in each cluster. If
we define the numbers of cells involving perturbation i in cluster j
as mij, and define the total cell numbers of cluster j as nj, the ratio
can be expressed as:

Rij = mij/nj

SCREE calculates the perturbation enrichment ratio for each
perturbation to each cluster and visualizes it by heatmap.

Perturbation signature calculation
For scRNA-seq-based datasets and gene activity matrices, SCREE
calculates the perturbation signature for each cell using CalcPer-
turbSig in Seurat [23]. By default, the 20 nearest negative control
cells in the same replicate condition of each cell will be used
to calculate the perturbation signature, along with the top 40
dimensions. SCREE will not calculate perturb signature and model
perturbation efficiency if too few negative control cells are present
in any of the replicates.

Perturbation efficiency modeling
Based on the assay of perturbation signatures, SCREE adopts
RunMixscape in Seurat to model perturbation efficiency for each
sgRNA. Since this function only accepts cells with one sgRNA as
input, only cells with a single sgRNA are included in the perturb
signature assay. The default minimum number of differentially
expressed genes is 5, and the number of iterations is 10.

Regulatory score estimation
There are three existing R-based methods including scmageck_lr,
GSFA and SCEPTRE, which are designed to estimate the regulatory
relationship from single-cell CRISPR screens data. GSFA is based
on the combination of Bayesian factor analysis and linear regres-
sion while SCEPTRE is based on the combination of logistic regres-
sion, conditional resampling and negative binomial regression.
Compared to the other two similar R-based methods, scmageck_lr
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utilizes a simple linear regression model, which will make it easier
to process datasets with a large number of cells and will take
less memory and running time. Therefore, for scRNA-seq-based
datasets and gene activity matrices, SCREE adopts scmageck_lr
in scMAGeCK to estimate the regulatory score and P-value for
each perturbation to each gene. The original steps for selecting
highly expressed genes in scmageck_lr will result in memory
error when processing datasets with a large number of cells.
SCREE performed the selection of highly expressed genes during
the scRNA-seq QC step and skipped the parameter for selecting
the highly expressed genes in scmageck_lr. In addition, SCREE
removed several redundant matrix transposes in the original
scmageck_lr function and modifies all the source codes to matrix
operations. The final outputs are the same as the original function
but with much-improved efficiency.

Potential targets identification
Given the regulatory score and corresponding P-value, SCREE
identifies potential target genes for each perturbation. By default,
for each perturbation, genes with regulatory score >0.2 and P-
value <0.05 are defined as potential target genes. For scATAC-seq-
based datasets, SCREE adopts FindMarkers in Seurat to identify
differentially accessible (DA) peaks for each perturbation, com-
pared to negative control cells. By default, the Wilcoxon rank sum
test will be used to identify DA peaks, and peaks with log2FC > 0.25
and adjusted P-value < 0.05 will be considered as DA peaks.

Visualization for the regulatory score of genes in enhancer
regions
For enhancer perturbation datasets, SCREE will visualize the loca-
tion of potential target genes with a P-value < 0.05 as default
and its regulatory score for each enhancer. By default, SCREE
visualizes the extended region for each enhancer (±2 Mb). For
scATAC-seq-based datasets, SCREE identifies DA peaks that do not
overlap with the promoter region as potential enhancer regions.
By default, the promoter regions for each gene are defined as 2 kb
upstream of the transcription start sites (TSS). With the potential
enhancer regions and regulatory score from gene activity matri-
ces, SCREE can visualize the regulatory score for the genes in
potential enhancer regions. In addition, the visualization function
is derived from the plot function of Cicero [33].

Expression of genes surrounding enhancers
To provide further evidence for identifying potential enhancer-
gene pairs, SCREE depicts scaled gene expression of all surround-
ing genes for each enhancer in the enhancer perturbation dataset.
For each enhancer, SCREE chooses for visualization those cells
assigned to it and the negative control. SCREE illustrates single,
multiple and negative controls as distinct conditions due to the
fact that cells assigned with multiple sgRNAs may have different
surrounding gene expression than cells assigned with a single
sgRNA.

Functional analysis
SCREE performs gene ontology (GO) enrichment analysis for each
perturbation using the putative target genes of each perturbation.
By default, SCREE conducts functional analysis on all potential
targets and visualizes the top 10 findings for biological processes,
molecular functions and cellular components.

HTML summary
SCREE incorporates all output figures and tables with the
parameter information into a summary HTML file to facilitate

visualization. In addition, the summary HTML file contains
fundamental information about the input dataset, including
genome reference version, perturbation numbers, data type, etc.

Implementation of SCREE
The preprocessing functions of SCREE were achieved using python
with command-line interfaces for parameter parsers. The anal-
ysis functions were packed into an independent R package for
repeated analyses. Finally, all of the components of SCREE are pro-
vided under the Conda environment for an easy and streamlined
installation with a single command.

Data analysis
Gene perturbation data analysis
The ECCITE-seq dataset was obtained from GEO (GSE153056).
We used the raw UMI count matrix of RNA assay to create a
new SeuratObject and used the sgRNA information to create a
table with three columns of information: cells, sgRNA and the
corresponding genes. We also retained the replicate information
in meta data, as Mixscape would return more accurate results
with this information. With the new SeuratObject and the sgRNA
table, we first used the Add_meta_data function in SCREE to add
metadata of mitochondrial gene percentage, replicate informa-
tion and sgRNA assignment. To a uniform format, we renamed
the negative control in this dataset to ‘NTC’ and each sgRNA to
‘gene_sgRNA1, gene_sgRNA2’.

After adding metadata, we filtered out genes expressed in less
than 1% of cells and filter out cells with mitochondrial gene per-
centage > 10, nFeature_RNA < 200, or nCount_RNA < 1000. After
filtering, we normalized and scaled the count matrix using the
normalize_scale function with default parameters in SCREE. To
simply perform clustering and evaluate perturbation efficiency,
we executed IntegratedMixscape in SCREE with default parame-
ters, and the UMAP results labeled by perturbations only displayed
the top 20 perturbed genes with the greatest number of cells. To
visualize perturbation enrichment of all perturbed genes; how-
ever, CalculatePerturbEnrichment was re-executed for both "RNA"
and "PRTB" assays.

To estimate the regulatory score, we ran the improved_
scmageck_lr in SCREE. For each perturbed gene, we termed
genes with |score| > 0.2 and P_value < 0.05 as potential targets
to perform downstream analyses and visualization (Figure 2E, F
and Figure S1G, H available online at http://bib.oxfordjournals.
org/).

The paired gene perturbation dataset was obtained from GEO
(GSE133344). We only retained sgRNA with good coverage and
UMI counts >20 in the cell identities file. We then removed
cells with sgRNA of ‘NegCtrl10_NegCtrl0’, ‘NegCtrl1_NegCtrl0’,
‘NegCtrl11_NegCtrl0’ and only retained one negative control
sgRNA, ‘NegCtrl0_NegCtrl0’ to retain fewer cells. We only
performed single-cell quality control, sgRNA information visu-
alization, regulatory score calculation, and downstream analyses
and visualization. The parameters used in this dataset were the
same as the parameters used in the ECCITE-seq dataset (Table
S2).

OverCITE-seq data analysis
The OverCITE-seq dataset was obtained from GEO (GSE193736).
We converted the ORF count matrix to the same format as
the sgRNA table via the sgRNAassign function (freq_cut = 0,
freq_percent = 0) in SCREE, without the ‘sgRNA’ suffix. Using the
GEX count matrix, we also created a Seurat object and included
meta data. The HTO count matrix was utilized to produce labels
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for ‘resting T-cells’ and ‘stimulated T-cells’. We set the replicate to
‘1’ for all cells for simplicity, indicating that there was no replicate.
Additionally, we calculated the cell cycle score for each cell using
the CellCycleScoring function, as described in the original paper.

We normalize the count matrix using the centered log ratio
(CLR) transformation and then scale it by the fraction of mito-
chondrial genes, nCount_RNA, and an additional cell cycle score.
We next perform the same clustering and perturbation enrich-
ment calculation as in ECCITE-seq data processing. We selected
‘resting T-cells’ to estimate the regulatory score. In contrast, we
termed all genes with P_value < 0.05 as potential targets for each
ORF to perform downstream analysis and visualization (Figure 3E,
F and Figure S2D, E available online at http://bib.oxfordjournals.
org/). As in the original paper, we performed GO enrichment
analysis on putative LTBR targets (Figure 3F).

Enhancer-perturbation data analysis
The enhancer-perturbation dataset was obtained from GEO
(GSE120861). After creating SeuratObject and adding metadata,
we performed quality control and normalize the scale using
the same cutoffs and parameters as ECCITE-seq data analysis.
Mixscape evaluated perturbation efficiency based on the change
in transcript profile, however, the majority of the potential
enhancer may have no effect on the transcript profile and only
affect a small number of genes; thus, we also do not perform
Mixscape to this enhancer-perturbation dataset. The regulatory
score was then computed for downstream analysis. We termed
genes with |score| > 0.2 and P_value < 0.05 as potential targets
for each perturbation to perform downstream analysis and
visualization (Figure 4 and Figure S3E, F available online at http://
bib.oxfordjournals.org/). In addition, we visualize the regulatory of
potential direct targets for each enhancer, which means all genes
with regulatory P_value < 0.05 in the extended region (±2 Mb) of
the corresponding enhancer (Figure 4B and C). For visualization of
gene expression, we utilize the EnhancerGeneExpression function
in SCREE to visualize the expression of all genes in the extended
region for each enhancer (Figure 4D).

Spear-ATAC data analysis
The Spear-ATAC dataset was obtained from GEO (GSE168851).
We first used tabix to generate a tbi file for fragments file, and
then visualized fragments size distribution via the fragmentsSize
function (maxSize = 1000) in SCREE. Since the cell barcode
sequences in the sgRNA file were the reverse complement of
the cell barcode sequence in the count matrix, we regenerated
the sgRNA file according to the correct cell barcode first. The
sgRNA table was generated using the sgRNAassign function
(freq_cut = 20, freq_percent = 0.8). With the fragments file and
peak count matrix, we calculated FRiP for each cell instead
of mitochondrial gene percentage as a quality control metric.
We filtered out genes expressed in less than 1% of cells
and filtered out cells with FRiP < 0.1, nFeature_peak < 200, or
nCount_peak < 1000.

To perform common analysis in SCREE, we converted the peak
count matrix into the gene activity matrix via the CalculateGene-
Activity function (version = "v86", pro_up = 2000, pro_down = 0) in
SCREE. Subsequent analysis steps and parameters were identical
to those used for ECCITE-seq data analysis. In addition, for each
perturbed TF, we identified potential enhancer regions from DA
peaks and visualized the regulation relationship in the extended
peak region (±2 Mb) via the ATACciceroPlot function in SCREE. DA
peaks were identified using the FindMarkers function in Seurat
(min.pct = 0.1, logfc.threshold = 0.2).

Running time and memory analysis with the existing
packages
To compare the improved scmageck lr function in SCREE with
other existing R-based packages, we use 10 different datasets
with varying cell counts following quality control. We do not test
MUSIC since it is based on the topic model and does not produce
a score table for each perturbation to each gene. The 10 datasets
we used are from 10× Genomics Inc. (https://www.10xgenomics.
com/cn/resources/datasets/5-k-a-549-lung-carcinoma-cells-no-
treatment-transduced-with-a-crispr-pool-3-1-standard-6-0-0),
GSE90546, single cell portal (https://singlecell.broadinstitute.
org/single_cell/study/SCP1064/multi-modal-pooled-perturbcite-
seq-screens-in-patient-models-define-novel-mechanismsof-
cancer-immune-evasion.), and GSE-90063, GSE168620. Notably,
to generate large datasets and a dataset containing millions of
cells, we duplicated the matrix of GSE168620 2 times, 3 times and
4 times, which are the datasets containing almost 500 k, 750 k
and 1 M cells. We perform quality control, normalize and scale
for these datasets with the same criteria as previously.

GSFA (v0.2.8), SCEPTRE (v0.1.0) and scMAGeCK (v1.9.2) are all
installed from GitHub. We test GSFA with 1 k iterations in a
single script twice, SCEPTRE with 2 k permutations in parallel,
scMAGeCK and our function with 2 k permutations. In addition,
SCEPTRE removes cells and genes as part of its function, which is
unfair to other tools in this comparison, we thus do not include
the quality control phase of SCEPTRE.

Key Points

• A comprehensive single-cell CRISPR screen data analy-
ses workflow that supports multi-modal data analyses.

• Rich data pre-processing, analysis and visualization
functions that enable one-stop data analyses, quality
control, and identifying functional downstream targets
and regulatory circuits.

• Easy installation, user-friendly analysis reports, and fast
and memory-efficient processing steps.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxford
journals.org/.
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Alignment step: https://hailinwei98.github.io/alignment.html
Gene perturbation dataset: https://hailinwei98.github.io/RNA.

html
ORF overexpression dataset: https://hailinwei98.github.io/ORF.

html
Enhancer perturbation dataset: https://hailinwei98.github.io/

enhancer.html
Gene perturbation scATAC-seq dataset: https://hailinwei98.

github.io/ATAC.html
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